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Abstract

In this paper we investigate classes of finite partially ordered sets that are definable
by non-nested formulas in conditional logic. We discuss examples of such definable
classes and introduce the notion of a c-morphism between posets as a tool to show
that a class of finite posets is not definable. Using an analogue of the Jankov-Fine
formulas from modal logic, we show that a class of finite posets is definable by a set
of formulas if and only if it is closed under c-morphic images. Lastly, we prove a
Sahlqvist-like correspondence theorem stating that every class of finite posets that is
definable by a formula without nested conditionals is also definable by a first-order
formula.

Keywords: conditional logic, frame definability, non-monotonic logic, belief
revision, semiorers

1 Introduction

Conditional logic is a non-normal modal logic that extends propositional logic
with a binary modality ; that is called the (counterfactual) conditional. The
guiding semantic intuition is that a conditional φ; ψ is true if its consequent ψ
is true at all worlds that are either most preferred, most plausible or maximally
similar to the actual world among all the worlds that make the antecedent φ
true. This intuition can be made precise considering an order over the set of
worlds and then defining φ ; ψ to be true if ψ is true in all the minimal
φ-worlds [13,17]. The same semantic clause is also used in other settings that
are closely related to conditional logic, such as in default reasoning [28,15] and
in belief revision theory [12,24].

The set of validities of conditional logic depends on what class of orders the
semantics is based on. Lewis’ conditional logic from [17] consists of all formulas
that are valid with the above semantic clause over the class of all models based
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on weak orders. A generalization of this logic was obtained later by Burgess
[5] and Veltman [31], who axiomatize the validities over the class of all partial
orders. In the literature on default reasoning and belief revision theory the
validities of further classes of posets have been investigated, such as the class
of interval orders [16,19] or the class of semiorders [22,25].

In this paper we systematically investigate the relation between validity in
conditional logic and classes of finite posets. To this aim we adapt ideas from
frame correspondence theory for normal modal logics [3, ch. 3] to conditional
logic. The central notion for this paper is that of a class of finite posets being
definable by a set of formulas in conditional logic. A class of posets is definable
by a set of formulas if the class contains precisely the posets over which all the
formulas in the set are valid. As an example one has that Lewis’ conditional
logic defines the class of weak orders.

The main technical contributions of this paper as follows:

(i) We provide a formula in conditional logic that defines the class of
semiorders. To our knowledge this is a novel result. Characterizations
of semiorders have been given in the context of choice functions [14,8] and
belief revision theory [22,25]. However, these characterizations are for-
mulated in the metalanguage and it is not clear how to express them in
conditional logic.

(ii) We characterize the definable classes of finite posets as those that are
closed under c-morphic images. This results is similar to characterizations
in modal logic, which state, roughly, that a class of frames is definable by
modal formulas iff it is closed under generated subframes, coproducts and
bounded morphic images [10]. As a consequence of our result we get that
if a class of finite posets is not definable in conditional logic then there
is a concrete counterexample of a c-morphism from a poset that is in the
class to a poset that is not in the class.

(iii) We provide a procedure that, given a formula in conditional logic, com-
putes a first-order formula that is true in exactly those posets where the
conditional formula is valid. This result can be seen as a simple version of
the Sahlqvist Theorem for conditional logic.

The statement of the second result makes use of the notion of a c-morphism.
This notion is inspired by the notion of a bisimulation between preferential
models that was studied in the context of default reasoning by Zhu in [32]. A
c-morphism in the sense defined in this paper is a function whose graph is a
bisimulation in the sense of [32]. The precise formulation of the conditions in the
definition of a c-morphism is quite technical. One part of the definition is the
familiar back-condition from the definition of a bounded morphism; however,
in general c-morphisms are not order-preserving. The notion of a c-morphism
plays a role that is comparable to the notion of a bounded morphism, also
called p-morphism, in modal logic. In particular it holds that any two models
that are connected by a c-morphism satisfy the same formulas.

To our knowledge this paper is the first study of frame definability in con-
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ditional logic. As such our approach still has the following limitations:

(i) We only consider formulas of conditional logic in which the conditional is
not nested and all occurrences of propositional letters are in the scope of
the conditional. This allows us to focus on the aspects of definability that
are specific to the minimization semantics of conditionals.

(ii) We only consider finite posets. The main reason for this is that over non-
wellfounded posets minimization does not yield a well-behaved conditional
logic.

(iii) We only consider frame definability relative to posets, that are transitive,
reflexive and anti-symmetric relations. If one gives up anti-symmetry one
obtains a semantics of the condition over preorders, that is reflexive and
transitive relations. However, it has been shown that the logic of the class
of preorders is the same as the logic of the more restricted class of posets
[5,31]. If one additionally also removes the assumptions of transitivity or
reflexivity then one obtains conditional logics that are weaker than the
logic on posets. Following Hansson [13], such logics were studied mainly
in the context of deontic logic [23,20,9,21], but more recently they have
attracted broader attention [11,6]. We did not manage to adapt our tech-
niques, especially the central notion of a c-morphism, to such settings.

The structure of this paper is as follows: In Section 2 we discuss the syntax
and semantics of conditional logic and the notions of validity and definable
classes. In Section 3 we provide examples of definable classes of posets that have
arisen in the literature. In Section 4 we introduce the notion of a c-morphism,
which we then use in Section 5 to prove for some examples of classes of posets
that they are not definable. Section 6 contains the proof of the characterization
result that a class of finite posets is definable iff it is closed under c-morphic
images. In Section 7 we show that there is a first-order correspondent for every
non-nested formula of conditional logic.

2 Preliminaries

In this section we discuss the language of conditional logic and its semantics
over posets. We also define the notion of a definable class of posets.

2.1 Syntax

Conditional logics are commonly formulated in a classical propositional modal
language with one binary modality ;. A formula of the form φ; ψ is called
a conditional with antecedent φ and consequent ψ. In conditional logic condi-
tional can be nested within the scope of other conditionals, as for example in
the formula (((p; q) ; r)∧ q) → r. In this paper we, however, only consider
formulas in which the conditional is not nested and all propositional letters are
in the scope of a conditional. To make this precise fix an infinite set Prop of
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propositional letters and consider the grammar:

φ0 ::= p | ⊤ | ¬φ0 | φ0 ∧ φ0, where p ∈ Prop,

φ1 ::= φ0 ; φ0 | ⊤ | ¬φ1 | φ1 ∧ φ1.

Let L0 be the set of formulas generated from φ0 and L1 the set of formulas
generated from φ1. Note that L0 is just the language of classical propositional
logic. In both L0 and L1 we use further Boolean connectives, such as ⊥, ∨, →,
and ↔, as abbreviations with their usual meaning in classical logic. To omit
parenthesis we assume that ¬ binds stronger than ∧ and ∨, which in turn bind
stronger than ;, → and ↔.

We are going to focus on formulas from L1 that are of the shape

n∧
i=1

(φi ; ψi) →
m∨
j=1

(γj ; δj),

where φi, ψi, γj , δj ∈ L0 for all i and j. We call such formulas inference rules
or simply inferences or rules and suggestively write them as

φ1 ; ψ1 . . . φn ; ψn

γ1 ; δ1 . . . γm ; δm ,

or as Σ/Γ, where Σ = {φi ; ψi | 1 ≤ i ≤ n} and Γ = {γj ; δj | 1 ≤ j ≤ m}.
The elements of Σ are called the premises of the inference Σ/Γ and the elements
of Γ are its conclusions. We allow for the cases where Σ is empty, meaning that
the inference corresponds to a formula of the form ⊤ →

∨
Γ, and where Γ is

empty, meaning that the inference corresponds to the formula
∧

Σ → ⊥.
It is a consequence of Corollary 2.6 below, that for the purpose of under-

standing classes of posets that are definable by a formula in L1 it suffices to
only consider formulas that are in the shape of inference rules. Focusing on
the presentation of formulas as inference rules also matches the presentation in
the setting of non-monotonic consequence relations, where such rules between
conditional, thought of as non-monotonic inference relations, are taken as basic
[15]. In Section 3 we provide multiple natural examples of such inference rules
that have been discussed in the literature.

2.2 Semantics

The semantics of the conditional in conditional logic can be given in terms of
ternary similarity relations ≤ where u ≤w v holds if u is at least as similar to
w as v [17, sec. 2.3]. A conditional then holds with respect to such a relation
if the consequent is true at all the worlds that satisfy the antecedent and
are maximally similar to the actual world among the wolds that satisfy the
antecedent. In our setting, where we do not allow for the nesting of conditionals,
one can however omit the relativization to the actual world and just minimize
relative to a poset. This leads to the notion of a preferential model, which
is the kind of semantic structure that is commonly used for non-monotonic
consequence relations [15]:
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Definition 2.1 Recall that a poset P = (W,≤) is a set W together with a
partial order ≤ on W , where a partial order is just a reflexive, transitive and
anti-symmetric relation≤ ⊆W×W . Here, anti-symmetry denotes the property
that whenever w ≤ v and v ≤ w hold for some w, v ∈ W then it follows that
w = v. A preferential model M = (W,≤, V ) is a poset (W,≤) together with
a function V : Prop → PW . The elements of W are called worlds and the
function V is called the valuation function.

In this paper we assume that all models are finite, meaning that the set of
worlds W is a finite set. We use the notation w < v as a shorthand for the
conjunction of statements that w ≤ v holds and that v ≤ w does not hold.

The semantics of formulas from L0 and L1 is defined in the standard way.
The set of worlds JφKV ⊆ W , where a formula φ ∈ L0 is true, is computed
by the recursive clauses JpKV = V (p), J⊤KV = W , J¬φKV = W \ JφKV and
Jφ ∧ ψKV = JφKV ∩ JψKV . If V is clear, we write JφK instead of JφKV .

The semantic clauses for the propositional connectives over L1 relative to
the model M = (W,≤, V ) are

M |= ¬φ iff not M |= φ, and M |= φ ∧ ψ iff M |= φ and M |= ψ.

For the semantics of the conditional we use the order ≤. A conditional is true
if all of the minimal antecedent worlds satisfy the consequent:

M |= φ; ψ iff min≤(JφK) ⊆ JψK.

The minimal worlds of a set A ⊆W in a partial order ≤ over W can be defined
as min≤(A) = {x ∈ A | ∀y ∈ A(y ≤ x =⇒ x ≤ y)}.

Using a standard argument one can provide the following alternative for-
mulation of the semantics for the conditional in finite orders:

Proposition 2.2 Relative to all finite models (W,≤, V ) it holds that

M |= φ; ψ iff for all x ∈ JφK there is a y ≤ x with y ∈ JφK ∩ JψK.

The notions of validity and of a definable class are then defined analogously
to how they are defined for normal modal logics:

Definition 2.3 A formula φ ∈ L1 is valid in a poset P = (W,≤) if for all
valuations V : Prop → PW we have thatM |= φ for the modelM = (W,≤, V ).
We can extend validity to sets of formulas and classes of posets: A set of
formulas Σ ⊆ L1 is valid in a class of posets C if φ is valid in P for all formulas
φ ∈ Σ and P in the class C. If a formula, or set of formulas, is not valid in
a poset, or class of posets, we also say that the formula, or set of formulas, is
falsifiable in the poset, or class of posets and that the poset, or class of posets,
falsifies the formula, or set of formulas.

Definition 2.4 A formula φ ∈ L1 defines a class of finite posets C if and only
if for all finite posets P it holds that

P is in C iff φ is valid in P.



6 Frame Definability in Conditional Logic

Similarly, a set of formulas Σ ⊆ L1 defines a class of finite posets C iff for all
finite posets P it holds that P is in C if and only if Σ is valid in P . A class of
finite posets C is definable if there is some set Σ ⊆ L1 such that Σ defines C.

We conclude this section by showing that in order to study definable classes
it suffices to consider formulas that are in the syntactic shape of inference rules.

Proposition 2.5 Every formula φ ∈ L1 is equivalent to a conjunction of in-
ference rules.

Proof. This follows with propositional reasoning. To this aim consider φ ∈ L1

as a propositional formula where the conditionals are atoms. It is clear that we
can rewrite φ into an equivalent conjunctive normal form, i.e, a conjunction of
disjunctions of literals. It is also clear that every such disjunction of literals

n∨
i=1

¬(φi ; ψi) ∨
m∨
j=1

(γj ; δj)

is propositionally equivalent to the inference

n∧
i=1

(φi ; ψi) →
m∨
j=1

(γj ; δj).

2

By observing that a conjunction is valid iff all if its conjuncts are valid we
obtain the following Corollary:

Corollary 2.6 For every formula φ ∈ L1 there is a finite set of inferences
σ = {Σ1/Γ1, . . . ,Σn/Γ1} such that σ is valid in a poset (W,≤) if and only if φ
is valid in (W,≤).

3 Definable classes of posets

In this section we discuss examples of classes of finite posets that are definable
by a formula in conditional logic. Figure 1 provides an overview of the examples
from this section. The first-order formulas that describe the classes in the
second column should be understood such that all free variables are universally
quantified. The rules defining linear orders and orders with a minimum have
an empty set of premises. Recall from Section 2.1 that we read the conclusion
of these rules disjunctively.

Example 3.1 (Antichains) The class of antichains is defined by the rule

⊤ ; p

¬p; ⊥.

In order to see this, suppose that P = (W,≤) is a poset which is not an
antichain. Define the valuation V such that V (p) = min≤(W ), thus p is true
at all the minimal elements of P . Then ⊤ ; p is true but we can show
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Class First-order formula Defining rule

Antichains x ≤ y → y ≤ x

⊤ ; p

¬p; ⊥

With minimum ∃x∀y(x ≤ y) ⊤ ; p ⊤ ; ¬p

Linear orders x ≤ y ∨ y ≤ x p; q p; ¬q

Weak orders x < y → z < y ∨ x < z
p; q

p; ¬r p ∧ r ; q

Interval orders x < y ∧ z < u→ x < u ∨ z < y
p ∨ r ; q

p; q r ; q

Semitransitive orders x < y ∧ y < z → x < u ∨ u < z
p; q p ∧ ¬q ; ¬r
p; ¬r p ∧ r ; q

Fig. 1. Examples of definable classes of posets.

that ¬p ; ⊥ is false: because P is not an antichain, there is at least one
element y ∈W that is not minimal, hence J¬pK =W \min≤(W ) ̸= ∅, and thus
min≤(J¬pK) ⊈ ∅ = J⊥K.

Viceversa, if an antichain P = (W,≤) satisfies ⊤ ; p it means that all the
minimal elements of P satisfy p. But since P is an antichain, all its elements
are minimal and because JpK∩J¬pK = ∅ it must be J¬pK = ∅, therefore ∅ ⊆ J⊥K.

Example 3.2 (Orders with a minimum) It is easy to check that

⊤ ; p ⊤ ; ¬p

defines the class of all posets that have a unique minimal element.

Example 3.3 (Linear orders) We leave it to the reader to convince themself
that the rule

p; q p; ¬q
defines the class of all linear orders. Note that this rule has no premises and
thus expresses the formula (p; q)∨ (p; ¬q). In [17, sec. 3.4] Lewis calls this
formula “conditional excluded middle” and argues that its validity is charac-
teristic of Stalnaker’s account of conditionals from [29].

Example 3.4 (Weak orders) The class of weak orders is defined by the rule

p; q
p; ¬r p ∧ r ; q.

Note that weak orders are also called strict weak orders and they can also
be represented as total preorders. They provide a semantics for conditional
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logic that is equivalent to Lewis’ systems of spheres [17, sec. 2.3]. In belief
revision theory they provide a semantics for the classic AGM postulates for
belief revision [1,12]. In the guise of total preorders they are also behind the
standard semantics of dynamic epistemic logic [2]. The inference rule used here
to define weak orders is the rule of “rational monotonicity” from [16].

Example 3.5 (Interval orders) It is not hard to show that the following rule
defines interval orders

p ∨ r ; q
p; q r ; q.

This rule has been called “disjunctive rationality” in the literature on non-
monotonic reasoning [16,19,4]. Interval orders derive their name from the ob-
servation that they are precisely the orders that can be represented by a natural
ordering of arbitrary length intervals on the line [7]. The interval order condi-
tion also plays a role in the semiorders that we discuss as the next example.

Example 3.6 (Semitransitive orders and semiorders) Semitransitive orders
are defined by the inference rule

p; q p ∧ ¬q ; ¬r
p; ¬r p ∧ r ; q . (1)

As semiorders are semitransitive interval orders, it follows that semiorders
are defined by this rule together with the disjunctive rationality rule from
Example 3.5. It has been argued that semiorders model human preference
more adequately than weak orders [18,30]. It can be shown that they are
representable, analogously to interval orders, by intervals of constant length
[27]. Semiorders have been axiomatized in the context of choice functions
[14,8] and in belief revision theory [22,25]. However, both settings use axioms
that are not obviously expressible in the language of conditional logic.

To prove that the rule in (1) defines the class of semitransitive posets first
assume that P = (W,≤) is a poset that fails to be semitransitive. This means
that there are points x, y, z and u with x < y < z such that u is incomparable
to x and z. Thus, P has a subposet that looks as follows:

x : pqr

y : pqr

z : pqr

u : pqr

It is easy to see that in the model with a valuation V such that V (p) =
{x, y, z, u}, V (q) = {x, u} and V (r) = {z, u} all the premises of the rule in
(1) are true while all the conclusions are false.

For the other direction assume that the rule in (1) is valid in a poset P =
(W,≤). To see that then P is semitransitive choose any points x, y, z and u
in P such that x < y < z. To show that then either x < u or u < z consider
a valuation V with V (p) = {x, y, z, u}, V (q) = {x, u} and V (r) = {z, u}. It
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is clear that this makes the conditionals p ; q and p ∧ ¬q ; ¬r true because
min≤(JpK) ⊆ {x, u} = JqK and min≤(Jp ∧ ¬qK) = min≤({y, z}) = {y} ⊆ J¬rK.
It follows that either p ; ¬r or p ∧ r ; q is true in (W,≤, V ). The former
means that min≤({x, y, z, u}) ⊆ {x, y}, which entails x < u, and the latter
means that min≤({z, u}) ⊆ {x, u}, which means that u < z.

4 C-morphisms

In this section we introduce c-morphisms, which we will use to show that a
class of posets is not definable by a formula in conditional logic. C-morphisms
are precisely those functions whose graph is a bisimulation in the sense of [32].

Definition 4.1 A c-morphism f from a poset P = (W,≤) to a poset P ′ =
(W ′,≤′) is a function f :W →W ′ such that:

(i) For all w ∈W and u′ ≤′ f(w) there is a u ≤ w such that f(u) = u′;

(ii) For all w′ ∈ W ′ there is a w ∈ W such that f(w) = w′ and for all u ≤ w
we have that f(u) ≤′ w′.

A poset P ′ is a c-morphic image of a poset P if there is some c-morphism
from P to P ′. We can extend the notion of a c-morphism to models such that
f :W →W ′ is a c-morphism from M = (W,≤, V ) to M ′ = (W ′,≤′, V ′) if f is
a c-morphism from (W,≤) to (W ′,≤′) and V (p) = f−1(V ′(p)) for all p ∈ Prop.

Note that the first condition in the definition of c-morphisms is just the
back condition for bounded morphisms in modal logic. Also note that it follows
from the second condition that every c-morphism is surjective. However, the
following examples shows that c-morphisms need not be order-preserving:

Example 4.2 The following is a picture of a c-morphism between two prefer-
ential models. The first models contains the worlds w1, w2 and w3, and the
second model contains the worlds v1 and v2. The mapping of the c-morphism
is depicted with the dashed arrows.

w3 : p

w1 : p

w2 : p v1 : p v2 : p

C-morphisms can be characterized via the preservation of minimal elements:

Proposition 4.3 Let P = (W,≤) and P ′ = (W ′,≤′) be finite posets, f :W →
W ′ is a c-morphism if and only if for every subset X ′ ⊆ W ′ we have that
f(min≤(f

−1(X ′))) = min≤′(X ′).

Proof. For the left-to-right direction, assume that f : W → W ′ is a c-
morphism from P to P ′. We prove that f(min≤(f

−1(X ′))) = min≤′(X ′) holds
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for every X ′ ⊆W ′:
The ⊆-inclusion: Let w′ ∈ f(min≤(f

−1(X ′))). Hence, there must be w ∈
min≤(f

−1(X ′)) such that f(w) = w′. To prove that w′ ∈ min≤′(X ′) it suffices
to show that, for any u′ ∈ X ′ with u′ ≤′ w′, u′ = w′. Thus, let u′ be any such
world. By condition (i) from the definition of c-morphisms we have that there
is u ≤ w with f(u) = u′. Hence, u ∈ f−1(X ′). As w ∈ min≤(f

−1(X ′)) we have
that u = w, hence u′ = w′, proving the claim.

The ⊇-inclusion: Let w′ ∈ min≤′(X ′) and assume for a contradiction that
there is no w ∈ min≤(f

−1(X ′)) such that f(w) = w′. We use an induction
to construct an infinite descending chain w0 > w1 > . . . in f−1(X ′), which
contradicts the finiteness ofW . By condition (ii) for c-morphisms there is some
w0 ∈ W such that f(w0) = w′ and for all u ≤ w0 we have that f(u) ≤′ w′.
Inductively, we then assume that we are given some wi ≤ w0 such that f(wi) =
w′. Clearly, this inductive assumption is satisfied by w0 in the base case. Since
f(wi) = w′ it follows by our assumption that wi /∈ min≤(f

−1(X ′)). This means
that there is some wi+1 < wi such that f(wi+1) ∈ X ′. By instantiating the u
from the condition on w0 with wi+1 we get that f(wi+1) ≤ w′. Because w′ ∈
min≤′(X ′) it follows from f(wi+1) ∈ X ′ and f(wi+1) ≤ w′ that f(wi+1) = w′.
Hence, wi+1 satisfies our inductive assumption as well.

For the right-to-left direction of the proposition, assume that f is such that
for any X ′ ⊆W ′ we have that f(min≤(f

−1(X ′))) = min≤′(X ′). We show that
f satisfies both conditions for c-morphisms:

Condition (i): Let w ∈W and u′ ≤′ f(w) = w′ be arbitrary. We show that
for some u ≤ w we have that f(u) = u′. If u′ = w′ then by reflexivity it trivially
follows that w ≤ w and f(w) = u′. Hence, assume that u′ ̸= w′ and take X ′ =
{u′, w′}. By assumption we get that f(min≤(f

−1(X ′))) = min≤′(X ′) = {u′}.
Hence, as w′ /∈ min≤′(X ′), we have that w /∈ min≤(f

−1(X ′)). Therefore, we
deduce that there must be some u ≤ w with u ∈ min≤(f

−1(X ′)). As u is
minimal in f−1(X ′), it follows that f(u) = u′, proving the claim.

Condition (ii): Let w′ ∈ W ′ be arbitrary and assume by way of contra-
diction that for all w ∈ W with f(w) = w′ there is some u ≤ w such that
f(u) ≰′ w′. We construct an infinite chain X ′

0 ⊊ X ′
1 ⊊ . . . of larger and

larger subsets in W ′, leading to a contradiction with the assumption that W ′

is finite. This chain is constructed by an induction, where at every step i
we guarantee that w′ is a minimal element of X ′

i. In the base case we set
X ′

0 = {w′}, for which we obviously have that w′ is a minimal element of the
set. In the inductive step assume that we are given X ′

i such that w′ is a mini-
mal element of w′. Because f(min≤(f

−1(X ′
i))) = min≤′(X ′

i) there is then some
w ∈ min≤(f

−1(X ′
i)) such that f(w) = w′. It follows that there is some u ≤ w

such that f(u) ≰′ w′. Define X ′
i+1 = X ′

i ∪ {f(u)}. Because f(u) ≰′ w′ it holds
again that w′ is a minimal element of X ′

i+1. To show that X ′
i ⊊ X ′

i+1 we argue
that f(u) /∈ X ′

i. Assume for contradiction that f(u) ∈ X ′
i. Then, u ∈ f−1(X ′

i).
Because w ∈ min≤(f

−1(X ′
i)) and u ≤ w it would follow that u = w, which is

impossible because f(u) ≰′ w′ = f(w). 2

The crucial property of c-morphisms is that they preserve the truth of
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formulas in conditional logic:

Proposition 4.4 Let M = (W,≤, V ) and M ′ = (W ′,≤′, V ′) be finite pref-
erential models and f a c-morphism from M to M ′. Then, it holds for all
formulas φ ∈ L1 that

M |= φ iff M ′ |= φ.

Proof. The proof is an induction on the complexity of formulas φ ∈ L1.
First, note that it follows with an easy induction on the complexity of

formulas φ ∈ L0 that JφKV = f−1(JφKV ′). The base case V (p) = f−1(V ′(p))
holds for all p ∈ Prop because f is a c-morphism of models.

The main inductive case is where φ = χ ; ψ is a conditional, with χ, ψ ∈
L0. First, observe that because the direct image map is left adjoint to the
inverse image map we have that

f(min≤(JφKV )) ⊆ JψKV ′ iff min≤(JφKV ) ⊆ f−1(JψKV ′). (2)

Because from the base case for formulas in L0 we have that f
−1(JψKV ′) = JψKV ,

it follows that the right side of (2) is equivalent to min≤(JφKV ) ⊆ JψKV , which
means that M |= φ ; ψ. On the other hand using that f is a c-morphism
we get from Proposition 4.3 that f(min≤(f

−1(JφKV ′))) = min≤′(JφKV ′). Com-
bining it with f−1(JψKV ′) = JψKV , which follows from the base case, it implies
that the left side of (2) is equivalent to min≤′(JφKV ′) ⊆ JψKV ′ . This is pre-
cisely the semantics ofM ′ |= φ; ψ. The remaining cases for the propositional
connectives in L1 follow by standard reasoning. 2

By using the preservation result we have just shown, we can also prove that
c-morphisms preserve validities in posets:

Theorem 4.5 Let f be a c-morphism from a finite poset P = (W,≤) to a
finite poset P ′ = (W ′,≤′). Then, every formula φ ∈ L1 that is valid in P is
also valid in P ′.

Proof. We reason by contraposition: assume that φ is not valid in P ′. Then,
there is some valuation V ′ : Prop → PW ′ such that for the derived modelM ′ =
(W ′,≤′, V ′) we have thatM |̸= φ. We lift V ′ to a valuation V : Prop → PW for
P by exploiting f : for p ∈ Prop, take V (p) = f−1(V ′(p)). Let M = (W,≤, V )
be the derived model: by definition we now have that f is a c-morphism between
the models M and M ′. Hence, by Proposition 4.4, it follows that M |̸= φ, i.e.
φ is not valid in P . 2

One might rephrase Theorem 4.5 as stating that definable classes of posets
are closed under c-morphic images. Thus, this result can be used show that
some class of posets C is not definable by a formula, or set of formulas, in
conditional logic: if there are two posets P and P ′ such that P is in C but P ′

is not in C, and there is a c-morphism from P to P ′, then C is not definable.

5 Classes of posets that are not definable

In this section we will use Theorem 4.5 to give examples of classes of posets
that are not definable by formulas in conditional logic.
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We first make an observation about c-morphic images, which allows us
to easily show for many classes of posets that they are not definable. The
observation is that for every poset P with n minimal elements there is a c-
morphism from P to the antichain with n elements An. Therefore, every class
of posets that contains a poset with n minimal elements but does not contain
An is not definable.

Lemma 5.1 Let An be the antichain with n elements. Then, for every finite
poset P with at least n minimal elements, we have that there is a c-morphism
f from P to An.

Proof. Let P = (W,≤) be a finite poset with an enumeration m1, . . . ,mk of
its k distinct minimal elements for k ≥ n, and let a1, . . . , an be an enumeration
of the n elements in the antichain An. We define a surjective function g from
{m1, . . . ,mk} to {a1, . . . , an} by setting g(mi) = ai for i ≤ n and g(mi) = a1
for i > n. Then, observe that because P is finite we have for every w ∈W some
minimal element mw of P such that mw ≤ w. We then define the c-morphism
f by mapping each w ∈W to the element g(mw) of An.

The definition of f satisfies condition (i) of Definition 4.1 because for every
w ∈W and u′ ≤ f(w) we have that f(w) = u′, as An is an antichain.

For condition (ii) note that for every w′ ∈ W we have w′ = f(m) for some
minimal element m of P . If we then consider any u ≤ m we get that u = m,
by the minimality of m, and hence it trivially holds that f(u) = w′. 2

Together with Theorem 4.5 we obtain the following corollary:

Corollary 5.2 If a class of finite posets contains a poset P with k minimal
elements but does not contain the antichain An for some n ≤ k then the class
is not definable.

From this corollary we immediately obtain the following examples of classes
that are not definable by formulas in conditional logic:

Example 5.3 The classes of posets with more than n elements for n ≥ 1, with
exactly n elements for n > 1, with more than n minimal/maximal elements for
n ≥ 1, and with chains longer than n for n ≥ 1 are all not definable. In each
of these classes we have some poset with at least 1 minimal element but all of
these classes do not contain the antichain A1 with exactly one element.

Example 5.4 The classes of connected posets, of posets with a maximum, and
of join-semilattices, are not definable. All these classes contain the poset

x

a

y

with exactly 2 minimal and 1 maximal element. But all of these classes do not
contain the antichain A2 with 2 elements.

Lastly, we provide an example of an undefinable class for which we could
not use the above corollary to prove its undefinability:
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Example 5.5 The class of finite meet-semilattices is not definable. Consider
the following two posets:

1

2 3

x

4 5

6

1′

2′ 3′

4′ 5′

6′

Clearly, the left poset is a meet-semilattice, while the right one is not. One can
verify that the function f with f(x) = 4′ and f(n) = n′ for n ∈ {1, 2, . . . , 6}
defines a c-morphism from the left poset to the right one. To check condition (ii)
of Definition 4.1 observe that for the element 4′ on the right we have the element
4 on the left such that for each n ≤ 4 it holds that n′ ≤ 4′.

6 The characterization theorem

We have already seen in Section 4 that every definable class of finite posets is
closed under c-morphic images. In this Section we show that the converse is
also true: every class of finite posets that is closed under c-morphic images is
definable by a set of formulas in conditional logic. Thus, the definable classes
of frames are precisely those that are closed under c-morphic images:

Theorem 6.1 A class of finite posets C is definable by some set of formulas
Σ ⊆ L1 if and only if C is closed under c-morphic images.

To prove Theorem 6.1 we define an analogue of the Jankov-Fine formulas
that can be used to show a similar characterization result for modal logic over
finite transitive frames [3, sec. 3.4]. Thus, we define for every finite poset P a
characteristic formula χP with the property that for every finite poset P ′ we
get that P ′ falsifies χP iff P is a c-morphic image of P ′.

Definition 6.2 Fix a finite poset P = (W,≤) such that W = {w1, . . . , wn}.
For every point wi ∈W define the formula αi ∈ L0 such that

αi =
∨

{pj | wj ̸≤ wi}.

We then define the characteristic formula χP ∈ L1 of P as the rule

¬
∨n

j=1 pj ; ⊥ {pi ∧ pj ; ⊥ | i ̸= j} {pi ∨ pj ; pi | wi < wj}
{pi ; ⊥ | 1 ≤ i ≤ n} {pi ∨ αi ; αi | 1 ≤ i ≤ n} .

To gain some intuition about what it means that this formula is falsified
in a poset, recall that if the formula is falsified in P ′ = (W ′,≤′) then there is
some valuation V ′ over W ′ such that in the resulting model M ′ = (W ′,≤′, V ′)
we have that all the conditional that are premises of χP are true in M ′, while
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all the conditionals that are conclusions of χP are false. First, observe that
because of the truth of the premise ¬

∨n
j=1 pj ; ⊥ and the truth of the premise

pi ∧ pj ; ⊥, for i ̸= j the sets JpiKV ′ , for i ∈ {1, . . . , n}, partition W ′. Because
of the falsity of the conclusion pi ; ⊥ there is at least one world that makes
pi true for every i ∈ {1, . . . , n}. Moreover, we have that:

• The truth of the premise pi∨pj ; pi for wi ≤ wj means that every pj-world
in M ′ is above some pi-world.

• The falsity of the conclusion pi ∨ αi ; αi entails that there is at least one
pi-world in M ′ that has no pj-world for wj ̸≤ wi below it.

Lemma 6.3 For every finite poset P , P falsifies χP .

Proof. Let P = (W,≤) and W = {w1, . . . , wn}. Define the valuation V such
that V (pi) = {wi} and consider M = (W,≤, V ). It is clear that then the
sets JpiKV partition W and thus the first two premises of χP are true in M
and the first conclusion of χP is false. Also observe that if wi < wj then
min≤({wi, wj}) = {wi}. Thus M makes the premise pi ∨ pj ; pi true. To
see that M makes the conclusion pi ∨ αi ; αi false, for every fixed i, we use
the alternative semantic clause from Proposition 2.2. Hence, we need to find
some word w ∈ Jpi ∨ αiK such that v ̸≤ w for all v ∈ JαiK. Clearly we can take
w = wi because every v ∈ JαiK is of the form v = wj for some wj ̸≤ wi. 2

Proposition 6.4 For every finite poset P ′, P ′ falsifies χP if and only if there
exists a c-morphism f from P ′ to P .

Proof. The direction from right to left follows immediately from Lemma 6.3
together with Theorem 4.5.

For the direction from left to right, assume that P ′ = (W ′,≤′) falsifies χP

of some poset P = (W,≤) with W = {w1, . . . , wn}. Let V ′ be the valuation
such that M ′ |̸= χP for M ′ = (P ′,≤′, V ′). As already described above, note
that this means, by the truth of the first premises, that the JpiKV ′ partition
W ′, and, by the falsity of the first conclusions, that none of the JpiKV ′ is empty.
We then define a function f : W ′ → W such that f(w′) = wi for the unique
i such that w′ ∈ JpiKV ′ . We check that f is a c-morphism according to the
conditions of Definition 4.1.

Condition (i): We need to show that for every w′ ∈W ′ and u ≤ f(w′) there
is some u′ ≤′ w′ such that f(u′) = u. Fix such w′ and u and let wi = u and
wj = f(w′). If u = f(w′), then we can just let u′ = w′ and thus we can assume
that u < f(w′), implying that wi < wj . As the premise pi ∨ pj ; pi is true
in M ′ and we have w′ ∈ JpjKV ′ , it follows that there must be some u′ ∈ JpiKV ′

with u′ ≤′ w′. Then, from u′ ∈ JpiKV ′ , it follows that f(u′) = wi = u and
hence we have found a suitable u′.

Condition (ii): We need to show that for every wi ∈ W there is some
w′ ∈ W ′ such that f(w′) = wi and for every u′ ≤′ w′ we get f(u′) ≤ wi.
Fix wi. Because the conclusion pi ∨ αi ; αi is false in M ′ it follows from
Proposition 2.2 that there is some w′ ∈ JpiKV ′ such that for all u′ ≤′ w′ it holds
that u′ /∈ JαiK. As w′ ∈ JpiKV ′ we get that f(w′) = wi. Because αi is defined
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as
∨
{pj | wj ̸≤ wi} the claim that u′ /∈ JαiK for all u′ ≤′ w′ is equivalent to the

claim that f(u′) ≤ wi holds for all u
′ ≤ w′. 2

Proof. (Proof of Theorem 6.1) The direction from left to right follows from
Theorem 4.5. For the direction from right to left, assume that C is closed under
c-morphic images. Then, let ΓC be the set of all formulas valid on the class C,
that is, ΓC = {φ ∈ L1 | φ is valid in P for all P in C}. It is obvious from the
definition all the formulas in ΓC are valid in all the posets from C. To show
that ΓC defines C it suffices to show that if all of ΓC is valid in some poset
P , then P ∈ C. Let P be such a poset. Consider its characteristic formula
χP ∈ L1. By Lemma 6.3 we know that P falsifies χP . Thus, it cannot be that
χP ∈ ΓC , which entails that there is some poset P ′ ∈ C that falsifies χP . From
Proposition 6.4 it follows that P is a c-morphic image of P ′ and so P must also
be in C as the latter is closed under c-morphic images. 2

7 First-order correspondents

In this section we show that for every non-nested formula in conditional logic
there is a formula in first-order logic that is true in precisely the finite posets
where the formula of conditional logic is valid. Thus, every definable class
of finite posets is elementary. For this result we are assuming a first-order
language where the relations ≤ and < of posets and the equality relation are
expressible. We then obtain the following:

Theorem 7.1 For all σ ∈ L1 one can compute a first-order formula φσ such
that φσ is true in a finite poset P if and only if σ is valid in P .

Remark 7.2 We do not expect that Theorem 7.1 still holds for formulas with
nested conditionals. To consider an analogue of the theorem for the full lan-
guage of conditional logic one would have to consider frames to be ternary
relations ≤ such that for each world w ∈ W the restricted relation ≤w is a
poset. We conjecture that there are non-elementary classes of such frames that
are definable in nested conditional logic. Applying the translation of the modal
diamond 3φ as the conditional ¬(φ ; ⊥) one can probably adapt examples
of non-elementary classes that are definable in modal logic [3, sec. 3.2].

To prove Theorem 7.1, first observe that because of Corollary 2.6 it suffices
to consider the case where σ is an inference of the form σ = Σ/Γ. We are going
to define a first-order formula φσ that is true in some finite poset P iff σ is
falsifiable in P . For the statement of the theorem we then need to consider the
formula ¬φσ.

Let A the set of all propositional assignments to the propositional letters
occurring in σ. It can be thought of as the set of all functions from these letters
to the truth values 0 and 1. Note that A is a finite set. For every propositional
formula α ∈ L0 we define JαK ⊆ A to be the set of all assignments at which φ
is true in the sense from classical propositional logic.

Define S ⊆ ΓΣ∗ to be the set of all sequences

(γ ; δ, α1 ; β1, . . . , αn ; βn)
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such that:

(i) γ ; δ ∈ Γ is some conclusion from Γ;

(ii) αj ; βj ∈ Σ is some premise from Σ for all j ∈ {1, . . . , n};
(iii) The Σ-part of the sequence does not contain repetitions. This means that

αj ; βj ̸= αk ; βk for all j, k ∈ {1, . . . , n}.
The length of a sequence u ∈ S of the form (γ ; δ, α1 ; β1, . . . , αn ; βn) is
the number n. We consider singleton sequences (γ ; δ) ∈ S, where γ ; δ ∈ Γ,
to be of length 0. Note that because of the last clause the length of sequences
in S is bounded by the number of elements in Σ. Thus S is a finite set.

Let u = (γ ; δ, α1 ; β1, . . . , αn ; βn) be some sequence from S and let
α; β ∈ Σ be such that α; β ̸= αi ; βi for all i ∈ {1, . . . , n}. We then write
u · α; β to denote the sequence (γ ; δ, α1 ; β1, . . . , αn ; βn, α; β) ∈ S.

We then consider partial functions S from the disjoint sum S+PΓ of S and
the powerset of Γ to the set A. For any such partial function S letDS ⊆ S+PΓ
be the part of the domain on which S is defined. We call a partial function S
from S+ PΓ to A coherent if

(i) For all γ ; δ ∈ Γ we have (γ ; δ) ∈ DS and S((γ ; δ)) ∈ Jγ ∧ ¬δK.
Here, we consider (γ ; δ) as a sequence in S and explicitly distinguish it
from the singleton set {γ ; δ} ∈ PΓ;

(ii) If u = (γ ; δ, α1 ; β1, . . . , αn ; βn) and u ∈ DS then S(u) ∈ Jαn ∧ βnK;
(iii) If u = (γ ; δ, α1 ; β1, . . . , αn−1 ; βn−1, αn ; βn) and u ∈ DS then

S(u) /∈ JαiK for all i ∈ {1, . . . , n− 1};
(iv) If u ∈ S∩DS and S(u) ∈ Jα ∧ ¬βK for some α; β ∈ Σ then u ·α; β ∈

DS . Note that by the previous two conditions it is not possible that α; β
is a premise that already occurs in u. Hence, u · α ; β is well-defined as
an element of S;

(v) If ∆ ∈ DS for some ∆ ⊆ Γ then S(∆) /∈ Jα ∧ ¬βK for all α; β ∈ Σ.

Let C be the set of all coherent partial functions from S+PΓ to A. Note that
C is finite.

We are working with a set of first-order variables {xu | u ∈ S+ PΓ}.
The first-order formula φσ is defined such that it states the existence of

some coherent partial function S ∈ C and points in the poset that for each
element of DS :

φσ =
∨
S∈C

∃xu . . . u, v ∈ DS . . . ∃xv(κ(S) ∧ ψ(S) ∧ χ(S) ∧ µ1(S) ∧ µ2(S)).

We use the notation ∃xu . . . u, v ∈ DS . . . ∃xv to denote a chain of existential
quantifiers that contains a quantifier for every variable xu for u ∈ DS . The
points corresponding to the elements of DS are further constrained by the
formulas κ(S), ψ(S), χ(S), µ1(S) and µ2(S) that all depend on S and contain
only free variables of the form xu for u ∈ DS .

The formula κ(S) requires that any two variables that are interpreted as
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the same point must also map to the same assignment under S:

κ(S) =
∧

u,v∈DS

S(u)̸=S(v)

xu ̸= xv.

The formula ψ(S) requires that ∆ ∈ DS for every ∆ ⊆ Γ for which there is
some point in W that is below all the x(ζ) for ζ ∈ ∆. Moreover, in this case
x∆ must be below all those x(ζ):

ψ(S) =
∧
∆⊆Γ

(∃y(
∧
ζ∈∆

y < x(ζ)) → ψ′(∆, S)),

where

ψ′(∆, S) =

{
⊥, if ∆ /∈ DS ,∧

ζ∈∆ x∆ < x(ζ), if ∆ ∈ DS .

The formula χ(S) states that if a sequence v from DS extends another
sequence u from DS then xv is below xu in the poset:

χ(S) =
∧

u∈DS∩S
v=u·ξ∈DS

xv < xu.

The formula µ1(S) requires that x(ζ) for every ζ = γ ; δ ∈ Γ is mini-
mal among all those points that interpret sequences that map under S to an
assignment in JγK:

µ1(S) =
∧

ζ∈Γ,u∈DS

S(u)∈JγK

¬xu < x(ζ).

The formula µ2(S) requires that xu for every extended sequence v = v′ ·α;

β, where α ; β ∈ Σ, is minimal among all those points that map to an
assignment in JαK:

µ2(S) =
∧

v=v′·α;β∈DS

u∈DS ,S(u)∈JαK

¬xu < xv.

It is clear that φσ can be computed from the inference σ. The remaining
two lemmas of this section show that φσ does indeed express the falsifiability
of σ.

Lemma 7.3 If σ is falsifiable in a poset (W,≤) then (W,≤) |= φσ.

Proof. Let V : Prop → PW be a valuation such that M = (W,≤, V ) makes
all the premises in Σ true and all the conclusion in Γ false.

To show that φσ is true in the poset (W,≤) we define a coherent partial
function S ∈ C and for every u ∈ DS an interpretation wu ∈W for the variable
xu. We use a(w) ∈ A for any w ∈W as a shorthand for the assignment

a(w)(p) =

{
1, if w ∈ V (p),

0, if w /∈ V (p).
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Note that with this definition w ∈ JφKV iff a(w) ∈ JφK holds for all φ ∈ L0.
The definition of S and the selection of wu, for u ∈ DS , proceeds in three

steps that extend the domain of S. In each of the steps our choice of the wu is
such that that S(u) = a(wu) for all u ∈ DS .

(i) We first define S on sequences of the form u = (γ ; δ) for all γ ; δ ∈ Γ.
Fix a conclusion γ ; δ ∈ Γ. Because γ ; δ is false in M , it follows that
there is some world w that is minimal in JγKV such that w /∈ JδKV . We
let wu = w be this world and define S(u) = a(w). Note that this ensures
that S satisfies condition (i) from the definition of coherent functions.

(ii) In this step we inductively extend the definition of S to longer and longer
sequences from S such that condition (iv) becomes satisfied. This defi-
nition is by induction on the length of sequences u ∈ S. In every step,
where we add a sequence u = v · α; β, we ensure that
(a) S and u satisfy conditions (ii) and (iii) for S being coherent,
(b) wu ≤ wv, and
(c) wu ∈ min≤(JαKV ).
The base case consists simply of all the sequences of length 0 that were
added in the previous step. In the inductive step assume that we have
already added all required sequences of length n. Let v ∈ DS be a sequence
of length n and assume that S(v) ∈ Jα ∧ ¬βK for some α; β ∈ Σ. We are
going to add the sequence u = v · α ; β to the definitional domain of S.
Because S(v) = a(wv) it follows that wv ∈ Jα ∧ ¬βKV . Since M |= α; β
there must be some w ∈ minJαKV with w ∈ JβKV and w < wv. We set
wu = w and S(u) = a(wu). This takes care of items (b) and (c) for u.
This definition also satisfies condition (ii) for S being coherent because
S(u) ∈ Jα ∧ βK.
To check that u satisfies condition (iii) assume that u′ = v′ · α′ ; β′

is a proper initial segment of u. We need to show that S(u) /∈ Jα′K, or
equivalently that wu /∈ Jα′KV . Inductively we can assume that all initial
segments of v already satisfy item (b) from above. Thus, wv ≤ wv′ and
together with wu < wv we obtain wu < wu′ . Moreover, because u′ satisfies
item (c) we know that wu′ ∈ min≤(Jα′KV ). Combining these facts we
obtain that wu /∈ Jα′KV .

(iii) Lastly, we consider any subset ∆ ⊆ Γ such that there exists some w′
∆ ∈W

such that w′
∆ < w(γ;δ) for all γ ; δ ∈ ∆. Fix such a ∆, define w∆

to be any minimal element of (W,≤) that is below w′
∆ and set S(∆) =

a(w∆). To see that this definition satisfies condition (v) on coherent partial
functions we need to see that w∆ /∈ Jα ∧ ¬βKV for all α ; β ∈ Σ. If this
was not the case then we would have that w∆ is minimal in JαKV , as it
is minimal in W , but w∆ /∈ JβKV . This would contradict the assumption
that the model M makes the premise α; β ∈ Σ true.

It is clear that the partial function S that is defined in this way is coherent.
It remains to be seen that the disjunct of φσ that corresponds to S is true
in (W,≤). To this aim we interpret the existential variable xu as the element
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wu ∈ W for all u ∈ DS . Because we have that S(u) = a(wu) for all u ∈ DS

it is guaranteed that κ(S) is true with this assignment. In the third step of
the construction of S we make sure that ψ(S) is true in (W,≤). The formula
χ(S) holds because of item (b) from the second step. In the first step we chose
w(γ;δ) ∈ min≤(JγKV ) and hence µ1(S) is true in (W,≤). Lastly, µ2(S) holds
because of item (c) from the second step. 2

Lemma 7.4 If (W,≤) |= φσ then σ is falsifiable in the poset (W,≤).

Proof. Assume that the first-order formula φσ is true in the poset (W,≤).
This means that there is some coherent S ∈ C such that κ(S), ψ(S), χ(S),
µ1(S) and µ2(S) hold for some interpretation of the existential variables from
{xu | u ∈ DS} in (W,≤). For all u ∈ DS let wu be the value of the variable xu
for which this is the case. DefineX ⊆W to be the setX = {wu ∈W | u ∈ DS}.

Note that because κ(S) holds for this interpretation of the existential vari-
ables it follows that S(u) = S(v), whenever wu = wv for some u, v ∈ DS . For
this reason the following function is well-defined s : X → A, wu 7→ S(u).

Our next goal is to define a function f :W → X from which we then define
the valuation V : Prop → PW by setting

V (p) = {w ∈W | s(f(w))(p) = 1}.

To define the value of f(w) ∈ X for some w ∈W , we distinguish cases depend-
ing on how w is situated relative to the elements in X.

(i) If there is some v ∈ X such that v ≤ w then we let f(w) = y for some
chosen y ∈ X that is maximal among all z ∈ X with z ≤ w. Because X
is finite such a maximal y always exists.

(ii) If there is no v ∈ X such that v ≤ w then we consider the set ∆ = {ζ ∈
Γ | w < w(ζ)}. Because ψ(S) holds of our assignment of variables we have
that ∆ ∈ DS . Thus, we can set f(w) = w∆ ∈ X.

Note that because of the first clause f is the identity on all w ∈ X ⊆W .
It remains to be proven that M = (W,≤, V ) makes all conditionals in Σ

true and all conditionals in Γ false.
Thus, consider any premise α ; β ∈ Σ. To show that M |= α ; β we

use the reformulation of the semantic clause from Proposition 2.2. To this aim
take any w ∈ JαKV . We need to find a w′ ≤ w with w′ ∈ Jα ∧ βKV . Distinguish
cases depending on the definition of f(w).

First consider the case where there is no v ∈ X such that v ≤ w. Then
f(w) = w∆ for some ∆ ⊆ Γ. Because of condition (v) of coherence it holds
that w∆ /∈ Jα ∧ ¬βKV . Note that the definition of V is such that w satisfies the
same propositional letters as w∆ because f(w) = w∆. Thus w /∈ Jα ∧ ¬βKV .
Because w ∈ JαKV it follows that w ∈ Jα ∧ βKV and we can take w′ = w.

In the other case there is some v ∈ X with v ≤ w then let y ∈ X be such
that y = f(w) and y ≤ w. Because y ∈ X we have that y = wu for some
u ∈ S + PΓ. We distinguish further cases depending on whether u ∈ PΓ or
u ∈ S. If u ∈ PΓ then u = ∆ for some ∆ ⊆ Γ and we can reason precisely as
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in the previous case. In the other case we have that u ∈ S. From f(w) = wu

and w ∈ JαKV it follows that wu ∈ JαKV , because w and wu satisfy the same
propositional letters under V . Note that we can assume that wu ∈ Jα ∧ ¬βKV
because if wu ∈ Jα ∧ βKV then also w ∈ Jα ∧ βKV and we can set w′ = w.
But wu ∈ Jα ∧ ¬βKV means that S(u) = s(wu) ∈ Jα ∧ ¬βK. By condition (iv)
from the definition of coherency this entails that v = u · α ; β ∈ DS . From
condition (ii) we get that S(v) ∈ Jα ∧ βK and thus wv ∈ Jα ∧ βKV . Using that
χ(S) is true in (W,≤) we have that wv ≤ wu. Using wu = y ≤ w it follows
that wv ≤ w. Thus we can take w′ = wv.

Lastly, we argue that the conclusions are false in M . Consider any conclu-
sion γ ; δ ∈ Γ. By condition (i) on the coherent function S we have that
S(γ ; δ) ∈ Jγ ∧ ¬δK. Thus w(γ;δ) ∈ Jγ ∧ ¬δKV . We are going to show the
claim that for all w ∈W with w < w(γ;δ) we have w /∈ JγKV . From this it then
follows by the alternative formulation of the semantics in Proposition 2.2 that
M |̸= γ ; δ. To prove the claim, consider any w < w(γ;δ). We distinguish
cases depending on the clause defining f(w).

If there is some v ∈ X with v ≤ w then consider the y ∈ X with y ≤ w
such that f(w) = y. By transitivity it follows that y ≤ w(γ;δ) and hence we
can use that µ1(S) is true to derive that y /∈ JγKV . Because f(w) = y we have
that the valuation V is the same on w as on y and hence also w /∈ JγKV .

If there is no v ∈ X with v ≤ w then f(w) = w∆ for some ∆ ⊆ Γ such that
γ′ ; δ′ ∈ ∆ whenever w < w(γ′;δ′). Because w < w(γ;δ) this means that
γ ; δ ∈ Γ. Because ψ(S) is true in (W,≤) it follows that w∆ < w(γ;δ) and
because µ1(S) is true it follows that w∆ /∈ JγKV . Because f(w) = w∆ we can
conclude that w /∈ JγKV . 2

8 Conclusion

This paper provides results on frame definability in conditional logic. Definable
classes of posets are characterized by being closed under c-morphic images and
every definable class of posets is elementary.

An obvious direction for further research is to lift some of the limitations of
the setting. First, one might be interested in studying definability of ternary
relations by formulas in full conditional logic, where the conditional can occur
nested. We expect that to obtain results in this direction one would have to
combine ideas from this paper with ideas from the work on frame definability
for normal modal logic. Second, one might try to generalize to the infinite
case. We conjecture that most of our results generalize to wellfounded orders.
For non-wellfounded orders, however, frame-definability seems to behave quite
different than in the finite case. Third, one might try to adapt our approach to
a setting that gives up some of the assumptions of anti-symmetry, transitivity
or reflexivity that come from working with posets. We expect this to be quite
challenging.

A further interesting open question is whether there are any general com-
pleteness results for conditional logics, similar to the Sahlqvist’s completeness
theorem for modal logic [26]. Many of the examples of formulas that we give
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in Section 3 were taken from literature that proves completeness results for
the logic that is axiomatized by these formulas. One might hope that there
is a general completeness result that gives a syntactic characterization a some
class of formulas and then shows that if one adds formulas from this class as an
additional axiom to the logic of Burgess [5] and Veltman [31], then one obtains
a logic that is complete for the class of posets that the formula defines.

References

[1] Alchourrón, C. E., P. Gärdenfors and D. Makinson, On the logic of theory change:
Partial meet contraction and revision functions, The Journal of Symbolic Logic 50
(1985), pp. 510–530.

[2] Baltag, A. and S. Smets, Conditional doxastic models: A qualitative approach to dynamic
belief revision, Electronic Notes in Theoretical Computer Science 165 (2006), pp. 5–21.

[3] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press,
2002.

[4] Booth, R. and I. Varzinczak, Conditional inference under disjunctive rationality,
Proceedings of the AAAI Conference on Artificial Intelligence 35 (2021), pp. 6227–6234.

[5] Burgess, J., Quick completeness proofs for some logics of conditionals, Notre Dame
Journal of Formal Logic 22 (1981), pp. 76–84.

[6] Ciabattoni, A., N. Olivetti and X. Parent, Dyadic obligations: Proofs and countermodels
via hypersequents, in: International Conference on Principles and Practice of Multi-
Agent Systems, 2022, pp. 54–71.

[7] Fishburn, P. C., Intransitive indifference with unequal indifference intervals, Journal of
Mathematical Psychology 7 (1970), pp. 144–149.

[8] Fishburn, P. C., Semiorders and choice functions, Econometrica 43 (1975), pp. 975–977.

[9] Goble, L., Axioms for hansson’s dyadic deontic logics, Filosofiska Notiser 6 (2019),
pp. 13–61.

[10] Goldblatt, R. I. and S. K. Thomason, Axiomatic classes in propositional modal logic, in:
Algebra and Logic: Papers from the 1974 Summer Research Institute of the Australian
Mathematical Society, Monash University, Australia, 1975, pp. 163–173.

[11] Grossi, D., W. van der Hoek and L. B. Kuijer, Reasoning about general preference
relations, Artificial Intelligence 313 (2022), p. 103793.

[12] Grove, A., Two modellings for theory change, Journal of Philosophical Logic 17 (1988),
pp. 157–170.

[13] Hansson, B., An analysis of some deontic logics, Noûs 3 (1969), pp. 373–398.
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