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Abstract. Reward machines allow the definition of rewards for tem-
porally extended tasks and behaviors. Specifying “informative” re-
ward machines can be challenging. One way to address this is to gen-
erate reward machines from a high-level abstract description of the
learning environment, using techniques such as AI planning. How-
ever, previous planning-based approaches generate a reward machine
based on a single (sequential or partial-order) plan, and do not allow
maximum flexibility to the learning agent. In this paper we propose a
new approach to synthesising reward machines which is based on the
set of partial order plans for a goal. We prove that learning using such
“maximally permissive” reward machines results in higher rewards
than learning using RMs based on a single plan. We present experi-
mental results which support our theoretical claims by showing that
our approach obtains higher rewards than the single-plan approach in
practice.

1 Introduction

Reward machines were introduced in [21] as a way of defining tem-
porally extended (i.e., non-Markovian relative to the environment)
tasks and behaviors. A reward machine (RM) is a Mealy machine
where states represent abstract ‘steps’ or ‘phases’ in a task, and tran-
sitions correspond to observations of high-level events in the envi-
ronment indicating that an abstract step/phase in the task has (or has
not) been completed [2, 23]. The RM-based algorithm proposed in
[2] has been shown to out-perform state-of-the-art RL algorithms,
especially in tasks involving temporally extended behaviours. How-
ever, while learning with a reward machine is guaranteed to converge
to an optimal policy with respect to the reward machine, in general
RMs provide no guarantees that the resulting policy is optimal with
respect to the task encoded by the reward machine. For example, a
reward machine may specify that event a should be observed before
event b, while in some environment states, it may be more efficient to
achieve b before a. In general, for an RM-based policy to be optimal
with respect to a task, the reward machine for the task must encode
all possible ways the task can be achieved.

Another problem with reward machines is how to to generate
them. While a declarative specification in terms of abstract steps or
phases in a task is often easier to write than a conventional reward
function, specifying a reward machine for a non-trivial task is chal-
lenging and prone to errors. Reward machines can be computed from
task specifications expressed in a range of goal and property specifi-
cation languages, including LTL and LTLf , in a straightforward way
[2]. However, reward machines generated from an abstract temporal
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formula may not expose significant task structure. Writing more “in-
formative” specifications can be challenging, and, moreover, may in-
advertently over-prescribe the order in which the steps are performed.
One way to address this problem, is to generate a reward machine
from a high-level abstract description of the learning environment,
using techniques such as AI planning [11, 12], or (in a multi-agent
setting) ATL model checking [24]. For example, Illanes et al. [11]
consider a high-level model, in the form of a planning domain, of
the environment in which the agent acts. They show how planning
techniques can be used to synthesise a plan for a task, which is then
used to generate a reward machine for that task. The reward machine
is used to train a meta-controller for a hierarchical RL agent. The
controller chooses which option (corresponding to an abstract action
in the planning domain) to execute next. Their results indicate that
an agent trained using a plan-based reward machine outperforms (is
more sample efficient than) a standard HRL agent. They also show
that reward machines based on partial-order plans outperform reward
machines generated from sequential plans, arguing that this is be-
cause partial-order plans allow more ways of completing a task.

While the results presented by Illanes et al. are encouraging, their
approach does not allow maximum flexibility to the agent, and thus
cannot ensure learning an optimal policy for the task. The reward ma-
chine they generate is based on a single partial-order plan. In many
cases, a goal may be achieved by different plans and each plan might
be more appropriate in different circumstances, e.g., depending on
the agent’s location, or the resources available.

In this paper we propose a new approach to synthesising reward
machines which is based on the set of partial-order plans for a goal.
We present an algorithm which computes the set of partial-order
plans for a planning task, and give a construction for synthesising a
maximally permissive reward machine (MPRM) from a set of partial-
order plans. We prove that the expected discounted future reward of
optimal policies learned using an MPRM is greater than or equal
to that obtained from optimal policies learned using a RM synthe-
sised from any single partial-order plan. We introduce a notion of the
adequacy of planning domain abstractions, which intuitively charac-
terises when a planning domain captures all the relevant features of
an MDP, and prove that the expected reward of an optimal policy
learned using an MPRM synthesised from a goal-adequate planning
domain is the same as that of an optimal policy for the underlying
MDP. Finally, we evaluate MPRMs using three tasks in the CRAFT-
WORLD environment [1] used in [11, 12], and show that the agent
obtains higher reward than with RMs based either on a single partial-
order plan or on a single sequential plan.
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2 Preliminaries

In this section, we provide formal preliminaries for both reinforce-
ment learning and planning.

2.1 Reinforcement Learning

In RL the model in which agents act and learn is generally assumed
to be a Markov Decision Process (MDP) M = 〈S,A, r, p, γ〉, where
S is the set of states, A is the set of actions, r : S × A × S → R is
the reward function, p : S × A → Δ(S) is the transition function,
and γ ∈ [0, 1] is the discount factor. It is assumed that the agent does
not have access to the model in which it acts, i.e., r and p are hidden
to it. The agent’s goal in RL is to learn a policy ρ : S → Δ(A),
i.e., a map from each state of the MDP to a probability distribution
over the set of actions. In particular, we are mostly interested in so-
called “optimal policies”, i.e., policies that maximise the expected
discounted future reward from any state s ∈ S:

ρ∗ = argmax
ρ

∑
s∈S

vρ(s)

where vρ(s) is the “value function”, i.e., the expected discounted
future reward obtained from state s by following policy ρ:

vρ(s) = Eρ

[ ∞∑
t=0

γtrt | s0 = s

]

where rt is the reward obtained at timestep t.
As the MDP’s dynamics and reward are hidden, the agent is sup-

posed to learn a policy by trial and error. This is achieved by the
agent taking an “exploratory” action a in a state s, and observing
which state s′ (sampled from p(s, a)) is reached and the reward
r′ = r(s, a, s′) that is obtained. By collecting these experiences
(s, a, s′, r′) ∈ S × A × S × R, or “samples”, the agent can learn a
policy ρ via RL algorithms, such as Q-learning [26].

2.2 Labelled MDPs

As in this work we assume the presence of planning domains and
reward machines, we also assume that we are given a so-called “la-
belling function” L. This function will be the link between the low-
level MDP, in which agents learn how to act, and the high-level plan-
ning domain and reward machine, which describe how agents can
achieve a task using high-level symbols and actions.

Definition 2.1 (Labelled MDP). Let P be a set of propositional sym-
bols. Then, a labelled MDP is a tuple M = 〈S,A, r, p, γ, L〉, where
S, a, r, p and γ are as in an MDP, and L : S → 2P is the labelling
function, mapping each state of the MDP to a set of propositional
symbols.

2.3 Reward Machines

Reward machines [23] are a tool recently introduced in the RL lit-
erature to define non-Markovian reward functions via finite state au-
tomata. Let M = 〈S,A, r, p, γ, L〉 be a labelled MDP for some set
of propositional symbols P .

Definition 2.2 (Reward Machine). A reward machine (RM) is a tuple
R = 〈U, u0,Σ, δu, δr〉, where U is the set of states of the RM, u0

is the initial state, Σ ⊆ 2P is the input alphabet, δu : U × Σ → U
is the state transition function, and δr : U × U → R is the reward
transition function.

When using RMs, training is usually done over the so-called
“product” between the labelled MDP and the RM, also known as
a “Markov Decision Process with a Reward Machine” (MDPRM)
[23].

Definition 2.3 (MDPRM). A Markov Decision Process
with a Reward Machine (MDPRM) is a tuple M =
〈S,A, p, γ, L, U, u0, δu, δr〉, where S,A, p, γ, L are as in the
definition of a labelled MDP, and U, u0,Σ, δu and δr are as in the
definition of a reward machine.

At each timestep, the RM is in some state u. As the agent moves
the MDP into state s′, the RM updates its internal state via the obser-
vation L(s′), i.e., the new RM state is u′ = δu(u, L(s

′)). Accord-
ingly, the RM also outputs the reward δr(u, u

′), which is the reward
the agent obtains. As in “vanilla” MDPs, the agent learns a policy
by taking exploratory actions and collecting rewards from the RM’s
reward function δr . Thus, samples include also the states of the RM,
i.e., each sample is a tuple (s, u, a, s′, u′, r′) ∈ S×U ×R×S×U .
For this reason, any RL algorithm that works with standard MDPs
can also be used in MDPRMs. Moreover, algorithms exploiting ac-
cess to the RM have also been proposed, e.g., CRM [23].

2.4 Symbolic Planning

A planning domain D = 〈F ,A〉, is a pair where F ⊆ P is a set of
fluents (propositions), and A is a set of planning actions. Planning
states are subsets S ⊆ F , where a proposition is in S if and only if it
is true in S. Actions a ∈ A are tuples a = 〈pre+, pre−, eff +, eff −〉
such that each element of a is a subset of F , pre+ ∩ pre− = ∅ and
eff + ∩ eff − = ∅. The “pre” sets are the sets of “preconditions”,
whereas the “eff ” are the sets of “effects”, or “postconditions”. pre+

are the propositions that must be true to perform the action, whereas
pre− those that must be false. Analogously, eff + are the proposi-
tions that are made true by the action, whereas eff − those that are
made false. Thus, an action a can be executed from a planning state
S if and only if pre+ ⊆ S and pre− ∩ S = ∅. Executing action a
in state S results in the new state S ′ =

(
S \ eff −)

∪ eff +. Given
an MDP M and a planning domain D, we assume that A ∩ A = ∅,
i.e., the planning actions are not the same as the actions the agent can
perform in the MDP. Intuitively, the planning actions can be seen as
high-level or abstract actions which correspond to sequences of ac-
tions in the MDP. For example, in a Minecraft-like scenario where
the agent can move up, down, left, and right on a grid, a planning ac-
tion might be “get wood” corresponding to a sequence of movement
actions ending in a cell containing wood.

As an example of a planning domain, consider the CRAFTWORLD

environment [1] in which an agent moves in a grid and has to gather
resources which can then be used to produce items.1 For example, the
agent can build a bridge in order to reach the gold ore. We assume
the agent can build two different types of bridge: an iron bridge or
a rope bridge. The iron bridge requires gathering wood and iron and
then processing them in a factory. The rope bridge requires gathering
grass and wood and processing them in a toolshed. The correspond-
ing planning domain D can be formalised as:

〈F = {has-wood,has-grass,
has-iron,has-bridge},

A = {get-wood,get-grass,get-iron,
use-factory,use-toolshed}〉

1 CRAFTWORLD is based on the popular video game Minecraft, and was
used as a test domain in [11, 12].
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The get-x actions have no preconditions, and only one positive
postcondition, i.e., that has-x is true. The use-factory ac-
tion has the preconditions has-wood and has-iron, the pos-
itive postcondition has-bridge, and the negative postcondi-
tions, has-wood and has-iron, i.e., the use-factory ac-
tion makes a bridge, “consuming” the resources collected by the
agent in the process. The use-toolshed action has has-wood
and has-grass as preconditions, the positive postcondition
has-bridge, and the negative postconditions, has-wood and
has-grass.

A planning task is a triple T = 〈D,SI ,G〉, where D is a planning
domain, SI is the initial planning state, and G = 〈G+,G−〉 is a pair
containing two subsets of F which are disjoint. Any planning state
S such that G+ ⊆ S and S ∩ G− = ∅ is a goal state. For example,
the planning task to build a bridge is given by the domain D we
have previously defined, the initial state SI = ∅, and the goal G =
〈{has-bridge}, ∅〉.

A sequential plan π = [a0, . . . , an] for a planning task T is a
sequence of planning actions ai ∈ A such that: (i) it is possible to
execute them sequentially starting from SI , and (ii) by doing so, the
planning domain reaches a goal state. For example, the following
sequential plan allows the agent to produce a rope bridge:

[get-wood,get-grass,use-toolshed]

A partial-order plan (POP) π = 〈A′,≺〉 is a pair where A′ is a
multiset of actions from A and ≺ is a partial order over A′ [3, 16].
We write a ≺ a′ to denote (a, a′) ∈≺, meaning that action a must be
performed before action a′. For example, the following partial-order
plan allows the agent to produce an iron bridge:

πiron-bridge =

〈{get-wood,get-iron,use-factory},
{get-wood ≺ use-factory,

get-iron ≺ use-factory}〉

Sequential plans are a special case of partial-order plans where ≺ is
a total order. In general, a partial-order plan corresponds to a set of
sequential plans, i.e., the set of all sequential plans that can be ob-
tained by extending the partial order ≺ to a total order (referred to
as a “linearisation” of the partial-order plan). Compared to sequen-
tial plans, partial-order plans allow the agent greater flexibility in
choosing the order in which actions are executed. While a sequential
plan constrains the agent to follow the total order of the plan, with a
partial-order plan the agent can perform any action a, so long as all
actions a′ such that a′ ≺ a have already been executed.

Typically, given a planning task, a partial-order planner, e.g., [18],
returns a single partial-order plan π = 〈A′,≺〉. However, in general,
a planning task can be achieved using multiple partial-order plans,
i.e., plans π′ where the actions in A′ are ordered differently, or which
use different multisets of actions.

Definition 2.4 (Set of all partial-order plans). The set of all partial-
order plans for a planning task 〈D,SI ,G〉, Π, is the set of plans
〈A′,≺〉 where A′ ⊆ A and any linearisation [a0, . . . , an] of A′

consistent with ≺ results in a goal state S, i.e., G+ ⊆ S and G− ∩
S = ∅.

It is straightforward to give an algorithm that returns the set of all
partial-order plans Π for a planning task, see Algorithm 1. We as-
sume the following definitions. steps(π) is the multiset of actions in
the plan π and ord(π) is the set of ordering constraints. In addition,

Algorithm 1 Compute the set of all partial-order plans
1: π ← 〈{start ,finish}, {start ≺ finish}〉
2: Π ← ∅
3: procedure POP-PLAN(π)
4: open ← open preconditions ∈ steps(π)
5: if open = ∅ then

6: Π ← Π ∪ {〈steps(π) \ {start ,finish}, ord(π) \
{start ≺ finish}〉}

7: else

8: for a ∈ steps(π) s.t. p ∈ pre(a) ∧ p ∈ open do

9: for a′ ∈ A ∪ steps(π) s.t. p ∈ eff (a′) do

10: if a′ is new then

11: π ← 〈steps(π) ∪ {a′},
ord(π) ∪ {start ≺ a′ ≺ finish}〉

12: ord(π) ← ord(π) ∪ {a′ ≺ a}
13: links(π) ← links(π) ∪ {(a′, p, a)}
14: ORDER(π, a′, p, a)

15: procedure ORDER(π, a′, p, a)
16: threats ← {(ai, aj) | (ai,¬p, aj) ∈ links(π)}
17: if threats 
= ∅ then

18: cons ← {{o1, . . . , on} | (aj , ak)i ∈ threats ∧
oi = a ≺ aj or oi = ak ≺ a′}

19: for c ∈ cons do

20: if ord(π) ∪ c is consistent then

21: ord(π) ← ord(π) ∪ c
22: POP-PLAN(π)
23: else

24: POP-PLAN(π)

the algorithm maintains a set links(π) of causal links of the form
(a′, p, a) where a′ and a are steps and p is a literal in the postcondi-
tion of a′ and in the precondition of a. Causal links record the reason
for adding step a′ to the plan (in order to establish precondition of
a), and are used to generate ordering constraints. A step a′′ threatens
a causal link (a′, p, a) if a′′ makes p false. To resolve the threat a′′

should be placed either before a′ in the order, or after a. An ordering
is consistent if it is transitive and does not contain cycles, i.e., there
is no ai, aj such that (ai ≺ aj), (aj ≺ ai) ∈ ord. Given a planning
action a, pre(a) is the set containing the positive and negative literals
of the propositional symbols appearing in the sets pre+ and pre− of
a, and eff (a) is the set of positive and negative literals in eff + and
eff −. A precondition p of a step a is termed open if there is no causal
link (a′, p, a) ∈ links(π) establishing p. A plan is complete if it has
no open preconditions. Initially, the set of plans is empty, and π is
initialised to a plan consisting of two steps: start and finish: start has
no preconditions and the initial state SI as a postcondition; finish has
no postconditions and the goal G as a precondition. ord contains the
single ordering constraint {start ≺ finish}, and links is empty.

The procedure POP-PLAN takes a partial-order plan π as input. If π
has no open preconditions, i.e., the plan is complete, then we remove
the steps start and finish, add it to the set of plans, and POP-PLAN re-
turns (lines 5-6). Otherwise, we iterate over each open precondition
in the set of open preconditions, open (lines 8-14). For each open
precondition p, an action a′ from the set of actions A of the planning
domain is chosen which establishes p (line 9; if there are no actions
which establish p, i.e., the plan cannot be extended to a complete
plan, this branch of the computation terminates and π is discarded).
The procedure ORDER is then called (line 14) to resolve any threats
introduced by the addition of a′. If there are no threats, then POP-
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PLAN is called again with the updated π containing a′ (lines 23-24).
Instead, if there exists at least a threat, the set of sets of ordering
constraints cons (line 18) contains all possible ways of safeguarding
each threatened link (ai,¬p, aj). For each such set of ordering con-
straints c, if c is consistent with the current ordering constraints in
ord(π), they are added to ord(π), and POP-PLAN is called to extend
the plan for each possible ordering of actions (lines 19-22). When a
plan is found, we backtrack and continue from the ‘closest’ enclos-
ing for loop (which may be iterating over sets of ordering constraints
in ORDER, or actions a′ and open preconditions p in POP-PLAN) to
search for alternative ways of extending the incomplete plan π. Al-
gorithm 1 runs in EXPSPACE, as the set of partial order plans is in
the worst case exponential in the number of actions in A. In practice,
this is often not an issue: the planning domain is an abstraction of the
underlying MDP, and the number of actions is typically small.

For the bridge task, the algorithm would produce another partial-
order plan, in which the agent builds a rope bridge using grass:

πrope-bridge =

〈A ={get-wood,get-grass,use-toolshed},
≺={get-wood ≺ use-toolshed,

get-grass ≺ use-toolshed}〉

Thus giving us the set of all partial-order plans for the bridge task:
Πbridge = {πiron-bridge, πrope-bridge}. In the Appendix2, we also
provide all sequential plans that can be obtained by linearising the
POPs in Πbridge.

3 Maximally Permissive Reward Machines

In this section, we show how the set of all partial-order plans, Π,
for a planning task T = 〈D,SI ,G〉, can be used to synthesise a
reward machine RΠ that is maximally permissive, i.e., which allows
the agent maximum flexibility in learning a policy.

Let Π be the set of all linearisations π of all the partial-order plans
in Π. We denote by pref (π) the set of all proper prefixes (of arbitrary
length) of π ∈ Π. Note that the prefixes are finite, as the set of ac-
tions in Π is finite. Then, let states(pref (π)) be the set of sequences
of planning states that is induced by the prefixes in pref (π), assum-
ing that the initial planning state is SI . We denote with steps(π) the
set of actions in a sequential plan, and with post(A′) the set con-
taining post(a), as defined in Section 2.4, for each planning action
a ∈ A′. For an arbitrary sequence of planning states u, we denote
with last(u) the last element of the sequence. For sets of literals P ,
we, respectively, denote with P+ and P− the sets of propositional
symbols with positive and negative literals in P .

Construction 1 (Maximally Permissive Reward Machine (MPRM)).
Fix the set of all partial-order plans Π = {π1, . . . , πn} for some
planning task T = 〈D,SI ,G〉. Then, RΠ, the maximally permissive
RM corresponding to Π, is defined as follows:

• U =
[⋃

π∈Π states(pref (π))
]
∪ {ug};

• u0 = [SI ];
• Σ =

⋃
π∈Π post(steps(π));

• δu(u, P ) = uS , where S =
(
last(u) \ P−)

∪ P+ and uS ∈
states(pref (π)) for some linearisation π ∈ Π, or = ug if G+ ⊆
S and G− ∩ S = ∅;

• δr(u, u
′) =

{
0 if u′ = ug

−1 otherwise.

2 A version of this paper including the appendix can be found on arXiv [25].

In the construction of the MPRM, the set of states correspond to
the set of all possible prefixes of planning states across all POPs
in the set used to build the reward machine. Then, the RM transi-
tions from a state u to a state u′ = uS when it observes the set of
propositional symbols P which are exactly the conditions such that
S =

(
last(u) \ P−)

∪ P+ and, most importantly, uS is a prefix of
some linearisation of a POP in Π. As soon as the RM “reaches” a
sequence of states such that the last state is a goal state for the task
(meaning also that a linearisation has been “completed”), it gives a
reward of 0 to the agent and terminates in state ug , while for all other
transitions the agent gets a reward of −1. Note that if uS is not the
prefix of any linearisation of a POP in Π, or S is not a goal state, then
δu(u, P ) = u. Figure 1 shows the MPRM synthesised from the set
Πbridge of all partial-order plans for the bridge example we gave in
Section 2.4.

Figure 1. MPRM for the bridge task. Positive and negative postconditions
are respectively denoted with a superscript + and −.

In the remainder of this section, we provide a theoretical analy-
sis linking the optimal policies that can be learned by an agent de-
pending on the kind of reward machine it is equipped with. We con-
sider RMs that can be built from the set of all partial-order plans
(RM-Π), a single partial-order plan (RM-π), and a single sequential
plan (RM-π), over the same planning domain D. All RMs issue a
non-negative reward only in the final state. We denote the optimal
policy learnt using the set of all partial-order plans by ρ∗RM-Π, using a
single partial-order plan by ρ∗RM-π , and using a single sequential plan
by ρ∗RM-π .

Theorem 3.1. Let M be a labelled MDP, D a planning domain
over M, and RM-Π, RM-π and RM-π final state reward machines
generated from D for the same task. Then,

ρ∗RM-Π ≥ ρ∗RM-π ≥ ρ∗RM-π

where ρ1 ≥ ρ2 if and only if v(ρ1(s)) ≥ v(ρ2(s)) for all states
s ∈ S of M.

Proof. The proof follows from the fact that any policy that can be
learned using an RM synthesised from a single sequential plan can
also be learned using an RM synthesised from a partial-order plan
which has the sequential plan as its linearisation (if it remains an
optimal policy). Similarly, a policy learned using an RM synthesised
from a single partial-order plan can also be learned using an RM that
is synthesised from the set of all partial-order plans.

Theorem 3.1 shows that MPRMs allow an agent to learn an op-
timal policy with respect to the planning domain and the planning
task. A natural question to ask is whether it learns a goal-optimal
policy ρ∗, i.e., a policy that achieves the goal using the smallest num-
ber of actions in the underlying MDP. For example, an agent using
Q-learning is guaranteed to learn a goal-optimal policy on an MDP
where the agent is always given the same negative reward and the
discount factor γ is exactly 1.
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An agent using an MPRM will learn a goal-optimal policy if the
planning domain and labelling are “adequate” for the goal.

Definition 3.2. Given a labelled MDP, planning domain D, and goal
G, we say that D is adequate for G if, and only if:

• G corresponds to a set of planning domain fluents, i.e., G ⊆ F ;
• a goal-optimal policy encounters all the state labels in some plan

π ∈ Π for G, in the order consistent with the order in π.

For example, if any policy to build a bridge has to encounter la-
bels corresponding to getting wood, getting iron and using a factory,
a planning domain and labelling containing only these fluents is ad-
equate for the goal of having a bridge. However, if there is an al-
ternative way of building a bridge that involves getting grass, and
this label is missing in the planning domain, then the domain is not
adequate for the goal of building a bridge.

Theorem 3.3. ρ∗ = ρ∗RM-Π if RM-Π is synthesized from a goal-
adequate planning domain.

Proof. From the definition of a planning domain adequate for the
goal, any goal-optimal policy has to go through the way-points en-
coded in the reward machine.

4 Empirical Evaluation

In this section, we evaluate maximally permissive reward machines
in three tasks in the CRAFTWORLD environment, and show that
the agent obtains higher reward with an MPRM than with RMs
based on a single partial-order plan or a single sequential plan. In
the first task, the agent has to build a bridge, as in the example
in Section 2.4 For the second task, the agent has to collect gold.
In the third task, the agent has to collect gold or a gem, and the
task is considered achieved when the agent collects at least one of
the two items. For the gold-or-gem task we have to slightly modify
the definition of goal states in planning tasks: the goal is the pair
G = 〈G+ = {has-gold,has-gem},G− = ∅〉, and a planning
state S is a goal state if and only if G+ ∩ S 
= ∅ and G− ∩ S = ∅.
The gold and the gem are collected as described in [1]: gold is col-
lected by using a(ny) bridge, whereas the gem is collected using an
axe. To produce an axe, the agent must combine a stick, which can
be obtained by processing wood at the workbench, with iron at the
toolshed. We refer to these, respectively, as the “bridge task”, “gold
task”, and “gold-or-gem task”. In the planning domain, we add the
following fluents:

• For the gold task: has-gold;
• For the gold-or-gem task: has-gold, has-stick, has-axe,
has-gem;

and the following planning actions:

• For the gold task:

– get-gold, with one positive precondition, has-bridge,
and one positive postcondition, has-gold;

• For the gold-or-gem task:

– use-workbench, with one positive precondition,
has-wood, one positive postcondition, has-stick,
and one negative postcondition, has-wood;

– use-toolshed-for-axe, with positive preconditions,
has-stick and has-iron, one positive postcondition,
has-axe, and two negative postcondition, has-stick and
has-iron;

– get-gem, with one positive precondition, has-axe, and one
positive postcondition, has-gem;

The set of partial-order plans for the bridge task Πbridge =
{πiron-bridge, πrope-bridge} is given in Section 2.4. For the gold
task, we extend πiron-bridge and πrope-bridge by adding the
get-gold action, and by having use-factory ≺ get-gold
and use-toolshed ≺ get-gold. For the gold-or-gem task, the
set of partial-order plans consists of πiron-bridge, πrope-bridge and
πgem in which the agent makes an axe and uses it to mine the gem.
πgem is defined as follows:

πgem =

〈A = {get-wood,get-iron,use-workbench,
use-toolshed-for-axe,get-gem},

≺= {get-wood ≺ use-workbench,

get-iron ≺ use-toolshed-for-axe,

use-workbench ≺
use-toolshed-for-axe,

use-toolshed-for-axe ≺ get-gem}〉

For each task, we also generate all sequential plans that can be ob-
tained by linearising the POPs that can be used to achieve the task.
Thus, for both the bridge and gold tasks, there are a total of 4 sequen-
tial plans and 2 partial-order plans. For the gold-or-gem task, there
are a total of 7 sequential plans and 3 partial-order plans. In the Ap-
pendix, we provide formal definitions of the planning domains, and
give also the plans for the gold and gold-or-gem tasks.

4.1 Experimental Setup

The maximally permissive RMs for each task were synthesised using
the construction given in Section 3. The RMs for each partial-order
and sequential plan were generated using the approach presented in
[11]. Training is carried out by using Q-learning over the resulting
MDPRMs [23].3

For each task we generated 10 different maps of size 41 by 41
cells. The maps and initial locations were chosen so that from some
locations a task can be completed more quickly by following a par-
ticular sequential plan. For example, in the first map for the bridge
task, if the agent starts from a location in the upper half of the map
(i.e., in the first 20 rows) it is more convenient to build an iron bridge,
while in the lower half of the map it is more convenient to build a rope
bridge. The MDP reward function r returns −1 for each step taken by
the agent, until it achieves the task or the episode terminates. When
the task is completed, the map and agent are “re-initialised”: the
agent is placed on a random starting cell and its “inventory” is emp-
tied, i.e., it contains no items. For each set of plans and single partial-
order/sequential plan for a task, and for each of the 10 maps for the
task, an agent was trained with the corresponding RM for 10,000,000
training steps. Training was carried out in episodes, lasting at most
1,000 steps, after which the environment was re-initialised regardless
of whether the agent has achieved the task or not. Every 10,000 train-
ing steps the agent was evaluated on the same map used for training
from 5 (predetermined) starting positions. We set the learning rate
α = 0.95, the discount rate γ = 1, and the exploration rate ε = 0.1.

3 Note that we do not provide results for a baseline that does not employ
reward machines (e.g., Q-learning): as shown in [23], CRAFTWORLD is a
complex environment with sparse rewards, making it infeasible for an agent
to learn an effective policy without having access to a reward machine.
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Our implementation, largely based off of that of [11], is available
on GitHub at github.com/giovannivarr/MPRM-ECAI24.

4.2 Results

For each approach, we plot the median and the 25th and the 75th per-
centiles (shaded areas) of the rewards obtained across all maps by
the agents in the evaluations during training for each task. To make
the plots more readable, we have “aggregated” results for the se-
quential and partial-order plan-based RMs: for each kind of plan we
plot the median and the 25th and the 75th percentiles of all agents
trained with an RM generated using that type of plan. In the plots,
“QRM-MPRM” denotes the performance of the agent trained with a
maximally permissive RM, while “Aggregated-QRM-Seq” and
“Aggregated-QRM-POP” are, respectively, the aggregated per-
formance of agents trained with sequential plan RMs and partial-
order plan RMs. On the x-axis we plot the number of steps (in mil-
lions), while on the y-axis we plot the performance obtained during
the evaluations run at the corresponding timestep.

Figure 2. Results for the bridge task.

Figure 3. Results for the gold task.

Figure 2 shows the results for the bridge task, Figure 3 shows the
results for the gold task, and Figure 4 shows the results for the gold-
or-gem task. As can be seen, in all tasks the agent trained with the
MPRM outperforms the aggregated results for the agents trained us-
ing RMs based on a single partial-order or sequential plan. This is
as expected given Theorem 3.1. In addition, the agent trained using
an RM based on a single partial-order plan outperforms the agent
trained using an RM based on a single sequential plan. Again, this

Figure 4. Results for the gold-or-gem task.

is consistent with Theorem 3.1 and the results in [11]. However, in
all experiments, the agent trained with the maximally permissive RM
converges more slowly than the other agents (particularly in the gold-
or-gem task). Intuitively, increasing the flexibility of the RM trades
solution quality for sample complexity. Note that, as the planning
domain used is adequate in the sense defined in Section 3 for all the
tasks, the MPRM agent can learn an optimal policy for each task.

Figure 5 illustrates the behaviour of the agent trained using the
MPRM and the agents trained using the RMs generated from each of
the partial-order plans on a map for the gold-or-gem task. For read-
ability, we have decided to not include agents trained with a sequen-
tial plan-based RM: note that none of them achieved the task in fewer
steps than the agents shown in the figure. In the supplementary ma-
terial we provide, for each agent, a file containing its trajectory (i.e.,
the ordered sequence of coordinates of the cells it visited) in the test,
also for agents trained with a sequential plan-based RM. Given the
initial position of the agent, the optimal plan for the task is to col-
lect a gem (POP-2). As can be seen, both the agent trained using
the POP-2-based RM and the MPRM agent achieve the goal by col-
lecting a gem and complete the task in 60 steps. The agent trained
using the RM based on the POP to collect gold using a rope bridge
(POP-1) is also able to achieve the task, but in 63 steps. However, the
agent trained using the RM based on the POP to collect gold using an
iron bridge (POP-0) is unable to complete the task after 10,000,000
timesteps. This illustrates that the MPRM agent is able to choose the
“correct” plan for the agent’s position, and the inherent problems of
training agents using an RM based on a single plan.

5 Related Work

Reward machines have been used both in single-agent RL [21, 6, 4,
7] and multi-agent RL [17, 10]. As mentioned in the Introduction,
approaches to synthesise reward machines from high-level specifica-
tions have also been proposed; however, to the best of our knowledge,
only [11, 12] and our work generate reward machines from plans.

Another line of research focuses on learning reward machines
from experience. In [22] an approach is proposed that uses Tabu
search to update the RM hypothesis, by searching through the trace
data generated by the agent exploring the environment. [28] pre-
sented an approach where the RM hypothesis is updated whenever
traces that are inconsistent with the current one are detected. In [9]
RM-learning is reduced to SAT solving, and solved using DPLL.
While these approaches do not require an abstract model of the envi-
ronment in the form of a planning domain, they focus on learning a
reward machine for a single task. In [22] and [28] the agent learns a
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Figure 5. Illustration of the behaviour of the MPRM and POP-trained agents on the gold-or-gem task.

policy for each state of the RM hypothesis. However, when the latter
is updated, it has to re-learn such policies from scratch ([28] tries to
mitigate this issue by transferring a subset of the policies, but this is
not always possible). Moreover, all these approaches assume that the
agent is able to generate “positive” traces, i.e., traces in which the
task is achieved. While in simple environments this is a reasonable
assumption, for more complex environments with sparse rewards it
may be difficult to generate positive traces.

Planning has been applied to reinforcement learning since at least
[8], which combined Q-learning with STRIPS planning. More re-
cently, [29] proposed an approach integrating planning with options
[20, 5]. In [15] a framework is introduced that exploits planning to
improve sample efficiency in deep RL. In both of these approaches
the RL experience is then used to improve the planning domain, sim-
ilarly to what happens in model-based RL. Then, the new plan ob-
tained using the updated domain is used to train again the RL agent.
In [19, 13, 27] abstract models for the low-level MDP and/or its ac-
tions are learned so that planning can be leveraged to improve learn-
ing. However, all of these approaches assume that learning is guided
by a single (sequential) plan.

6 Conclusions

We have proposed a new planning-based approach to synthesising
maximally permissive reward machines which uses the set of partial-
order plans for a goal rather than a single sequential or partial-order
plan as in previous work. Planning-based approaches have the ad-
vantage that it is straightforward to train agents to achieve new tasks
— given a planning domain, we can automatically generate a re-
ward machine for a new task. We have provided theoretical results
showing how agents trained using maximally permissive reward ma-
chines learn policies that are at least as good as those learned by
agents trained with a reward machine built from an individual se-

quential or partial-order plan, and the expected reward of an optimal
policy learned using an MPRM synthesised from a goal-adequate
planning domain is the same as that of an optimal policy for the un-
derlying MDP. Experimental results from three different tasks in the
CRAFTWORLD environment suggest that these theoretical results ap-
ply in practice. However, our results also show that agents trained
with maximally permissive RMs converge more slowly than agents
trained using RMs based on a single plan. We believe this is because
the increased flexibility of maximally permissive RMs trades solu-
tion quality for sample complexity. Our approach is therefore most
useful when the quality of the resulting policy is paramount.

A limitation of our approach is that, in the worst case, the set of
all partial order plans for a task may be exponential in the number
of actions in the planning domain. In future work we would like to
investigate the use of top-k planning techniques, e.g., [14], to sample
a diverse subset of the set of all plans. Intuitively, such an approach
could allow the quality of the resulting policy to be traded off against
the number of plans in the sample.

Another line of future work is to investigate option-based ap-
proaches to learning [20, 5] as in [12], where each abstract action
in a plan is “implemented” as an option. We expect results similar to
the ones in this paper, where the agent trained with all partial-order
plans is able to achieve a better policy but converging slower.

Finally, the experiments in Section 4 are limited to discrete en-
vironments. However, our approach is applicable to environments
with continuous action and state spaces. Reward machines have pre-
viously been successfully applied in such environments [23, 7], and
planning domains, which form the basis our approach, are agnostic
about the underlying environment, as they are defined in terms of
states resulting from (sequences of) MDP actions rather than the ac-
tions themselves. Nevertheless, learning in continuous environments
is more challenging than learning in discrete ones, and evaluating the
benefits of our approach in such environments is future work.
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