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Abstract. Reward machines have recently been proposed as a means
of encoding team tasks in cooperative multi-agent reinforcement learn-
ing. The resulting multi-agent reward machine is then decomposed into
individual reward machines, one for each member of the team, allowing
agents to learn in a decentralised manner while still achieving the team
task. However, current work assumes the multi-agent reward machine to
be given. In this paper, we show how reward machines for team tasks can
be synthesised automatically from an Alternating-Time Temporal Logic
specification of the desired team behaviour and a high-level abstraction
of the agents’ environment. We present results suggesting that our auto-
mated approach has comparable, if not better, sample efficiency than
reward machines generated by hand for multi-agent tasks.

1 Introduction

Reward machines (RMs) [4,18,19] have recently been proposed as a way of spec-
ifying rewards for reinforcement learning (RL) agents. RMs are Mealy machines
used to specify tasks and rewards based on a high-level abstraction of the agent’s
environment. Providing an explicit encoding of the structure of the task has been
shown to increase sample efficiency in reinforcement learning. For example, the
RM-based algorithm proposed in [4] has been shown to out-perform state-of-
the-art RL algorithms, especially in tasks requiring specific temporally extended
behaviours.

Recently, in [12], RMs were proposed as a means of specifying rewards for
team tasks in multi-agent reinforcement learning. In cooperative multi-agent
reinforcement learning (MARL) [13] the aim is to train a group of agents to
perform a team task with the objective of maximising the expected future reward
of the team. MARL is more challenging than single-agent RL. As the correctness
of the actions of each agent may depend on the actions of other agents in the
team, the agents must coordinate their actions [2]. In addition, the agents are
learning and updating their policies simultaneously. From the point of view of
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each individual agent, the learning problem is non-stationary; i.e., the optimal
policy for each agent is constantly changing [7].

In [12] these problems are addressed by specifying a multi-agent reward
machine which encodes the abstract structure of the team task. The multi-
agent reward machine is then decomposed into individual reward machines, one
for each member of the team. The decomposition is carried out by projecting the
coalition RM onto the set of observable events of each agent in the team. If the
decomposition is done in such a way that the combined behaviour of the indi-
vidual reward machines is “bisimulation equivalent” to that of the team reward
machine, each agent can be trained using its individual reward machine to per-
form its part of the team task in a decentralised manner while still ensuring that
the team task will be achieved by the joint action of the agents. This avoids the
problem of non-stationarity, and in [12] an algorithm based on this approach
called “Decentralized Q-Learning with Projected Reward Machines” (DQPRM)
is shown to be more sample efficient than independent q-learners (IQL) [16] and
hierarchical independent learners (h-IL) [17].

However, in [12], the multi-agent reward machine is generated “by hand”.
Although reward machines are usually specified by hand, some works, such as
[5,9], have shown how these can be synthesised automatically. Inspired by this
line of research, in this paper we show how individual reward machines can
be synthesised automatically from a high-level description of the agents’ envi-
ronment and an Alternating-time Temporal Logic (ATL) specification of the
desired team behaviour. As in [12], we provide formal guarantees ensuring that
the behaviour learned from our automatically synthesised individual RMs is
guaranteed to result in coordinated behaviour on the team task. Moreover, as
tasks are specified in ATL, we can easily incorporate additional constraints on
team goals, e.g., invariant properties, which were not dealt with in [12].

The structure of this paper is as follows. In Sect. 2, we give preliminaries for
our work; these include defining reward machines and the syntax and semantics
of (imperfect information) ATL. In Sect. 3, we present our approach and show
how to synthesise team and individual RMs. Moreover, we provide theoretical
results in line to those of [12]. Section 4 provides an empirical evaluation of our
work. As the main focus of our approach is to automatize the construction of
RMs in multi-agent reinforcement learning, we will show how agents trained with
our automatically synthesised RMs have comparable, if not better, performance
than those of [12]. Then, in Sect. 5 we present related works, and in Sect. 6 we
conclude and indicate possible future directions.

2 Preliminaries

In this section, we briefly introduce reward machines, multi-agent reinforcement
learning with reward machines, and Alternating Time Temporal Logic, which
form the basis of our approach.
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2.1 Multi-agent Environments

We begin by defining a Multi-Agent Environment (MAE) that specifies the low-
level environment in which the agents act.

Definition 1 (Multi-agent environment). A multi-agent environment with
n agents is a tupleE = 〈Agt, S1, . . . , Sn, A1, . . . , An,Pr , (Propi)i∈Agt,Val〉where:
– Agt is a non-empty finite set of n agents;
– Si is the finite set of states of agent i. We denote the set of joint states, i.e.,

the cartesian product of all the sets of states, with S = S1 × · · · × Sn;
– Ai is the finite set of actions of agent i. We denote the set of joint actions,

i.e., the cartesian product of all the sets of actions, with A = A1 × · · · × An;
– Pr : S × A × S → Δ(S) is the joint state transition probability distribution

and Δ(S) is the set of all probability distributions over S; Pr(s′|s,a) denotes
the probability of transitioning from a joint state s ∈ S to a joint state s′ ∈ S
by performing a joint action a ∈ A;

– (Propi)i∈Agt is the set of propositional symbols “observable” by agent i,
Prop :=

⋃
i∈Agt Propi is the entire set of observable propositions;

– Val : Prop → 2S is a valuation function mapping each propositional symbol
to the set of joint states in which it is true. For each agent i, we can also
obtain its individual valuation function Val i by taking the restriction of Val
onto Propi and Si;

A joint policy π : S → Δ(A) maps any state in a MAE E to a probability
distribution over the set of joint actions.

When agents are trained individually, we will consider their induced Markov
Decision Process (MDP), i.e., Mi = 〈Si, Ai,Pr ,Propi,Val〉.

In the context of a MAE, we might be interested in some specific propositions
that can aid us when specifying some task we want the agents to accomplish. In
such case, we give a “labelling”, used to describe how the evolution of the MAE
affects the truth of these propositions. Given a set of propositional symbols
Prop, we denote with Prop the set of literals we derive from it. For a given
propositional symbol p ∈ Prop, we denote with, respectively, p+ and p− its
positive and negative literal.

Definition 2 (Labelling). Given a MAE E = 〈Agt, S1, . . . , Sn, A1, . . . , An,
Pr , (Propi)i∈Agt,Val〉, its labelling is the, naturally induced, function L : S ×
A × S → ℘(Prop) mapping transitions in the MAE to the set of associated
literals that are brought about by it. To be precise, given joint states s, s′ ∈ S
and joint action a ∈ A, we have that L(s,a, s′) := {p+ | s /∈ Val(p) ∧ s′ ∈
Val(p)} ∪ {p− | s ∈ Val(p) ∧ s′ /∈ Val(p)}. As each agent i ∈ Agt has its own set
of observable propositional symbols Propi, we can define its individual labelling
Li : Si × Ai × Si → ℘(Propi) by analogously taking Li(si, ai, si) := {p+ | si /∈
Val i(p) ∧ s′

i ∈ Val i(p)} ∪ {p− | si ∈ Val i(p) ∧ s′
i /∈ Val i(p)}.

In this paper we focus on postcondition labelling, where L(s,a, s′) is the set
of literals made true in s′ by executing a in s. If, for a given atomic proposition
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Fig. 1. CooperativeButtons domain from [12].

p ∈ Prop, we have that neither of its literals appear in L(s,a, s′), then it means
that its truth value has not changed from s to s′.

Example 1. We now give an example of a MAE. The CooperativeButtons
environment [12] is a 10× 10 gridworld containing walls (some of which can
be lowered) and buttons (Fig. 1). There are three agents, i1, i2 and i3. Agents
can move left, up, right, down or stay in the same cell. Movement actions
are nondeterministic: if an agent moves in any direction, it may end up in a
cell adjacent to the one it was trying to reach with probability 0.2. Walls stop
agents from moving to the desired cell, but the coloured ones can be lowered by
pressing the corresponding button. The red button requires two agents to press
it together in order to lower the red wall. The goal of the agents is to cooperate
to allow agent i1 to reach the Goal location. The task can be achieved as follows:
first i1 presses the yellow button, then i2 the green button, then i2 and i3 the
red button, and finally i1 reaches the Goal location.

The set of propositional symbols is Prop = {YB , GB , ARB
2 , ARB

3 , RB ,Goal}.
Propositional symbols YB , GB and RB are true if, respectively, the yellow, green
and red button has been pressed, while Goal is true if an agent is on the goal
location G. If i2 and i3 are on the button, then propositional symbols ARB

2 and
ARB

3 are respectively true. As soon as both ARB
2 and ARB

3 are true, RB becomes
true as well. Agent i1’s set of propositions is Propi1 = {YB , RB ,Goal}, agent
i2’s is Propi2 = {YB , GB , ARB

2 , RB}, and agent i3’s is Propi3 = {GB , ARB
3 , RB}.

Note that there are no propositions corresponding to exact location of agents in
the environment, which would be relevant for the low-level MARL environment.

A joint state corresponds to the pair of coordinates 〈xj , yj〉 of each agent
ij ∈ {i1, i2, i3} and the set of propositions true in it1. Individual states for agent
i contain only its coordinates and the set of propositions, from Propi, true in it.
1 For convenience, we will omit the set of propositional symbols true in joint states, and

just give them as triples of coordinates. Whenever the set of propositional symbols
is needed, we will explicitly state it beforehand.



332 G. Varricchione et al.

We now explain how the set of propositional symbols is crucial in order to
correctly define the dynamics of MAEs. Suppose that agent i2 is in cell 〈5, 1〉,
i.e., in front of the yellow wall. If the agent were to perform (successfully) the
down action, then its resulting state would depend on whether YB is true or
false: in the former case, i2 reaches cell 〈5, 2〉, in the latter it will hit the wall
and remain on cell 〈5, 1〉.

Finally, as an example of a label for a transition, suppose the initial joint
state s is 〈〈1, 0〉, 〈5, 0〉, 〈8, 0〉〉 (with no propositional symbol being true) and
that the joint action is 〈right, stay, stay〉. In this case, if agent i1 correctly
moves to the right, the next joint state will be 〈〈2, 0〉, 〈5, 0〉, 〈8, 0〉〉, meaning
that agent i1 has correctly pressed the yellow button. Therefore, the transi-
tion 〈〈1, 0〉, 〈5, 0〉, 〈8, 0〉〉, 〈right, stay, stay〉, 〈〈2, 0〉, 〈5, 0〉, 〈8, 0〉〉 will be labelled
with {Y +

B }.

2.2 Reward Machines

A reward machine (RM) (referred to as a simple reward machine in [18]) is a
Mealy machine over an alphabet Σ. Intuitively, an RM takes abstract descrip-
tions of an event in the environment as input, and outputs a reward.

Definition 3. A reward machine is a tuple R = 〈U, uI , Σ, t, r〉 where:

– U is a finite non-empty set of states;
– uI is the initial state;
– Σ is a finite set of environment events;
– t : U × Σ → U is a transition function that, for every state u ∈ U and event

e ∈ Σ, gives the state resulting from observing event e in state u; and
– r : U × Σ → R is a reward function that for every state u ∈ U and event

e ∈ Σ gives the reward resulting from observing event e in state u.

In our case, the set of events Σ will correspond to sets of literals over the
finite set of propositional symbols Prop, as given in the definition of MAEs.

2.3 Multi-Agent RL with RMs

To formally define the multi-agent reinforcement learning problem with reward
machines, we introduce the notion of a Markov Game with a Reward Machine
(MGRM). An MGRM is essentially a product of a multi-agent environment and
a reward machine; it is the multi-agent analogous of a Markov Decision Process
with Reward Machine (MDPRM), as defined in [18].

Definition 4. A (cooperative) Markov Game with a Reward Machine is a
tuple G = 〈Agt, S1, . . . , Sn, A1, . . . , An,Pr , (Propi)i∈Agt,Val , L, γ, U, uI , Σ, t, r〉
where:

– Agt, Sj , Aj ,Pr , (Propi)i∈Agt,Val are as in Definition 1;
– L : S × A × S → ℘(Prop) is the labelling function, defined as in Definition 2;
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– γ ∈ [0, 1] is a discount factor;
– U, uI , Σ, t, r are as in Definition 3, with Σ = ℘(Prop);
– If in states s ∈ S, u ∈ U , the agents perform an action a to move from s to

s′, then u′ = t(u,L(s,a, s′)) and the agents receive a reward r(u,L(s,a, s′)).

The alphabet Σ is a labelling L of triples from S × A × S by consistent sets
of literals over Prop. In this paper we focus on postcondition labelling, where
L(s,a, s′) is the set of literals made true in s′ by executing a in s. As each
agent i ∈ Agt has a set of observable variables Propi ⊆ Prop, we define the set
of observable events of agent i as Σi := ℘(Propi)∩Σ. Notice that Σi is defined as
the powerset of the literals obtained by considering the propositions observable
by i. Similarly, for a coalition A ⊆ Agt, we define ΣA :=

⋃
i∈Agt Σi. We assume

that ΣAgt = Σ, i.e. the grand coalition is able to observe all events. For a given
event e ∈ Σ and a subset of events Σ′ ⊆ Σ, we denote the restriction of e onto
Σ′ by e � Σ′, where e � Σ′ ⊆ e is the maximal subset2 (with respect to inclusion)
of e that is also in Σ′. This will be used to define the ‘part of’ the event e that
is observable by a given subset of agents.

The (cooperative) multi-agent reinforcement learning problem [3,15] is to
learn an optimal group policy π∗ : S → Δ(A) that maximises the expected
discounted future reward from any joint state.

2.4 Alternating-Time Temporal Logic

Alternating-time Temporal Logic (ATL) [1] is a standard formalism for specify-
ing the high-level behaviour of agents in multi-agent systems. In this section, we
define the syntax and semantics of ATL with imperfect information. We need
imperfect information because we cannot assume that the agents can observe all
the effects of each other’s actions, and it is important for decomposability that
each agent bases its choice of actions only on what it can observe.

Let Agt = {i1, . . . , in} be a set of n agents and Prop denote a (finite) set of
propositional symbols. Formulas of ATL are defined by the following syntax:

φ, ψ ::= p | ¬φ | φ ∨ ψ | 〈〈A〉〉©φ | 〈〈A〉〉�φ | 〈〈A〉〉φ U ψ

where p ∈ Prop is a proposition and A ⊆ Agt. Here, 〈〈A〉〉©φ means that coalition
A has a strategy to ensure that the next state satisfies φ, 〈〈A〉〉�φ that A has a
strategy to ensure that φ is always true, and 〈〈A〉〉φ U ψ that A has a strategy to
ensure that φ holds until it eventually enforces ψ.

The models of ATL are concurrent game structures. Imperfect information
is modelled by indistinguishability relations between states, one for each agent.
The resulting concurrent game structures are called “epistemic concurrent game
structures”.

2 We assume that Σ′ is a subset of events obtained by taking the powerset of a subset
of propositional symbols Prop′ ⊆ Prop. This is to ensure that e � Σ′ is always
well-defined as the unique maximal subevent of e in Σ′.
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Definition 5. An epistemic concurrent game structure (ECGS) is a tuple M =
〈Agt,Q,Prop, v, (∼i| i ∈ Agt), Act, d, δ〉 where:

– Agt is a non-empty finite set of n agents;
– Q is a non-empty finite set of states;
– Prop is a finite set of propositional symbols;
– v : Prop → ℘(Q) is a valuation which associates each proposition in Prop

with a subset of states where it is true;
– ∼i⊆ Q × Q for each i ∈ Agt is an equivalence relation. For each state q ∈ Q,

we denote with [q]i the equivalence class of q for ∼i;
– Act is a non-empty finite set of actions;
– d : Q × Agt → ℘(Act)\{∅} is a function which assigns to each q ∈ Q a non-

empty set of actions available to each agent i ∈ Agt, with the constraint that
q1 ∼i q2 implies that d(q1, i) = d(q2, i). We denote joint actions by all agents
in Agt available at q by D(q) = d(q, i1) × . . . × d(q, in);

– δ : (q, σ) �→ Q is a function that gives for every q ∈ Q and joint action
σ ∈ D(q) the state resulting from executing σ in q. We write q

σ−→ q′ to
abbreviate δ(q, σ) = q′.

Given an ECGS M , we denote the set of all infinite sequences of states
(computations) by Qω. For a computation λ = q0q1 . . . ∈ Qω, we use, for any
natural j ∈ N, the notation λ[j] to denote the j-th state qj in the computation
λ. Given an ECGS M and a state q ∈ Q, a joint action by a coalition A ⊆ Agt
is a tuple σA = (σi)i∈A such that σi ∈ d(q, i) for all i ∈ A. The set of all joint
actions for A at state q is denoted by DA(q). Given a joint action by the grand
coalition σ ∈ D(q), σA denotes the joint action executed by A: σA = (σi)i∈A.
The set of all possible outcomes of a joint action σA ∈ DA(q) at state q is
out(q, σA) = {q′ ∈ Q | ∃σ′ ∈ D(q) : σA = σ′

A ∧ q′ = δ(q, σ′)}.
In our case, we specifically consider ECGSs in which each action a ∈ Act

has a set of (consistent) postconditions post(a) ⊆ Prop associated to. For any
coalition A ⊆ Agt, we define post(σA) :=

⋃
i∈A post(σi). The transition function

δ is defined accordingly: δ(q, σ) leads to the state q′ in which the propositional
symbols of positive and negative literals from post(σ) are, respectively, true and
false, and q′ ∈ v(p) ⇐⇒ q ∈ v(p) for all propositional symbols p without a
literal in post(σ). For joint actions σ such that post(σ) is not consistent, δ is
undefined.

Example 2. As an example, we provide an ECGS that abstracts the Coop-
erativeButtons MAE. Obviously, Agt = {i1, i2, i3}. We take Q = 2Prop ,
where Prop is the original set of propositional symbols from the Coopera-
tiveButtons domain, as given in Example 1, which also acts as the set of
propositional symbols in the ECGS. v is the naturally induced valuation, i.e.,
v(p) = {q ∈ Q | p ∈ q}. For the equivalence (indistinguishability) relation-
ships ∼i of agent i, we take the one naturally induced by the set of “observ-
able” propositional symbols Propi of agent i as described in Example 1. In
other words, for any agent i ∈ Agt, two states q, q′ are such that q ∼i q′ if
and only if q ∈ v(p) ⇐⇒ q′ ∈ v(p) for all p ∈ Propi. The set of actions
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is Act = {press yellow, press green, press red, to goal, nil}, where nil is
the “null” action that can be executed by any agent in any state and leads to
no consequence. The action press yellow can be performed only by agent i1,
whenever YB is false. press green can be performed only by agent i2, whenever
GB and YB are, respectively, false and true. press red can be performed by
agents i2 and i3: for the former, whenever YB is true, and, for the latter, when-
ever GB is true. Finally, to goal can be performed only by agent i1, whenever
RB is true. As for the transition function δ, all valid joint actions have the “intu-
itive” set of postconditions, e.g., if agent i1 performs the press yellow action
and i2 and i3 the nil action, then the ECGS moves from state q to state q′,
where the only difference is that q �∈ v(YB) and q′ ∈ v(YB). The only action
that requires “coordination” is press red, in the sense that δ is defined so that
any joint action σ moves the ECGS to a state where RB is true if and only if
σi2 = σi3 = press red.

We would like to stress how the ECGS differs from the MAE in this example:
as one can notice, the ECGS does not contain any information about the precise
position of the agents in the environment, unlike the MAE. Moreover, the set
of actions are completely different: the MAE’s actions describe how the agents
“phisically” move in the environment, whereas the ECGS’s describe how the
agents can press buttons or reach the goal. Due to this, having just a “strategy”
to achieve the task in the ECGS does not suffice for the agents to be able to
also achieve the task in the MAE: they need to learn how to move in the latter
environment in order to do so. However, as we will later see, having a “high-level
strategy” can aid them in learning how to act in the MAE.

Given an ECGS M , a strategy for a coalition A ⊆ Agt is a mapping FA :
Q → Act|A| such that, for every q ∈ Q, FA(q) ∈ DA(q). A computation λ ∈ Qω

is consistent with a strategy FA iff, for all j ≥ 0, λ[j + 1] ∈ out(λ[j], FA(λ[j])).
We denote by out(q, FA) the set of all consistent computations λ of FA that
start from q. Some strategies are unrealistic in that they require agents to select
different actions in two states that they cannot distinguish. For this reason, the
strategies are usually restricted to being uniform:

Definition 6 (Uniform strategy). A strategy for agent i, Fi, is uniform if
and only if it specifies the same choices for indistinguishable situations: if q ∼i q′

then Fi(q) = Fi(q′). A strategy for a coalition A is uniform if and only if it is
uniform for each i ∈ A.

Strong uniformity requires, in addition, that in order for a formula of the
form 〈〈A〉〉ϕ to be true in a state q, the same uniform strategy by A should
ensure ϕ from all the states indistinguishable from q by A, i.e., all q′ ∈ [q]A,
where [q]A is the equivalence class of q for ∼A:=

⋂
i∈A ∼i.

Given an ECGS M , a state q of M , the truth of an ATL formula ϕ with
respect to M and q is defined inductively on the structure of ϕ as follows:

– M, q |= p iff q ∈ v(p);
– M, q |= ¬φ iff M, q �|= φ;
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– M, q |= φ ∨ ψ iff M, q |= φ or M, q |= ψ;
– M, q |= 〈〈A〉〉©φ iff there exists a uniform strategy FA such that for all q′ ∼A q,

for all λ ∈ out(q′, FA): M,λ[1] |= φ;
– M, q |= 〈〈A〉〉�φ iff there exists a uniform strategy FA such that for all q′ ∼A q,

for all λ ∈ out(q′, FA) and j ≥ 0: M,λ[j] |= φ;
– M, q |= 〈〈A〉〉φ U ψ iff there exists a uniform strategy FA such that for all

q′ ∼A q, for all λ ∈ out(q′, FA), ∃j ≥ 0: M,λ[j] |= ψ and M,λ[k] |= φ for all
k ∈ {0, . . . , j − 1}.

Finally, we define a witness for a coalitional modality formula (see e.g., [11]).
If a formula of the form 〈〈A〉〉ϕ is true in a state q, there is a strategy FA such that
all paths generated by this strategy satisfy ϕ. A witness W (q, FA) for the truth
of 〈〈A〉〉ϕ in q is a finite tree rooted in q that is generated by executing FA. For ϕ
of the form ©φ, the tree is cut off at the first “step”, meaning that only states
satisfying φ and that can be reached from the initial state in one transition are
considered. For ϕ of the form φ U ψ, the tree is cut off at the states satisfying ψ.
For ϕ of the form �φ, the tree is cut off at the first repeating state encountered
on the branch (intuitively, it represents cyclic paths satisfying φ).

We specify tasks for for agent teams using ATL formulas. Hence, in our
approach, the ECGS will be the “high-level environment” which abstracts the
low-level MAE in which the agents act. For example, the task from the Buttons
domain can be specified as 〈〈Agt〉〉�U Goal : this formula is true if the grand
coalition Agt has a strategy to reach the goal. The ATL formula plays a role
similar to that of a planning goal in the synthesis of single-agent reward machines
in [9]. However, the use of ATL means we can specify more flexible properties:
for example, that Agt can bring about ψ while maintaining φ, or that Agt
can maintain some property forever φ, etc. We can also talk about abilities
of A ⊂ Agt allowing for, e.g., the presence of opponent coalitions. Nevertheless,
in this work we focus on the case in which A = Agt, leaving the treatment of
a non-fully-cooperative setting to future research. As we always assume that
A = Agt, we will write just A to refer to the grand coalition.

3 Synthesising MGRMs

In this section, we show how, given an ECGS M , an initial state q of such ECGS,
and an ATL formula 〈〈A〉〉ϕ specifying a team task, we can synthesise a MGRM
from a witness W (q, FA), where FA is a strategy for coalition A to enforce ϕ (if
there exists any).

In Fig. 2, we provide a high-level overview of the objects that are used in
our approach and how they are related to each other. The MAE and individual
agents’ environments (represented by Markov Decision Processes), the ECGS
and the ATL formula are all given in input, whereas the rest is computed in our
approach. We would like to stress the fact that the dynamics of the low-level
environments are hidden to the agents, which means that it is not possible for
them to compute a policy to perform the task by only having a witness of a
high-level strategy for it.
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Fig. 2. High-level overview and relationship between the objects used in our approach.
Objects in blue can be reused in other tasks.

3.1 Synthesising Reward Machines

Fix an ECGS M = 〈Agt,Q,Prop, v, (∼i| i ∈ Agt), Act, d, δ〉 with some initial
state q ∈ Q and an ATL formula 〈〈A〉〉ϕ. We can use an ATL model checker
to synthesise a uniform strategy FA to achieve the task encoded by the ATL
formula 〈〈A〉〉ϕ. For example, Fig. 3 shows a uniform strategy synthesised by
the MCMAS model checker [11] for the CooperativeButtons task. From a
uniform strategy FA to achieve 〈〈A〉〉ϕ and some initial ECGS state q, we can
generate a witness W (q, FA) for FA in time polynomial in M and 〈〈A〉〉ϕ. Then,
from the witness, we can synthesise both the coalitional RM RA and each of the
individual RMs Ri, for each agent i ∈ A.

Notice that the witness and the reward machine derived from it are defined
in terms of the (high-level) actions of M and are not directly executable in the
MAE E or in the individual agents’ environments. However, the synthesised RM
can be used to guide an agent in learning which low-level actions in E should be
performed to accomplish each step in the RM.

Intuitively, for a sub-coalition B ⊆ A, states of RB are equivalence classes of
nodes in the witness, plus an extra “error” state. Edge labels (ECGS actions)
in the witness are replaced with events corresponding to postconditions of those
actions. The reward machines for 〈〈A〉〉φ U ψ and 〈〈A〉〉�φ transit to the error
state on events corresponding to a violation of φ (we assume that ¬φ is always
observable by A). The error state has a self-loop and no transitions to other
states of the reward machine. Finally, the state corresponding to the second last
state of the witness for 〈〈A〉〉φ U ψ transits to the error state only on events that
both violate φ and are not postconditions of the last action in the witness (do
not achieve ψ).
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Fig. 3. Strategy for the CooperativeButtons domain. To obtain the corresponding
coalition RM, it suffices to modify the action labels with their corresponding postcon-
ditions and give 1 as a reward on the transition from state 3 to 4 and 0 on all other
transitions.

Reward Machine Synthesis. Given the ECGS M = 〈Agt,Q,Prop, v, (∼i| I ∈
Agt), Act d, δ〉 and a witness W (q, FA), we construct a reward machine RB =
〈UB , uI

B , ΣB , tB , rB〉 for B ⊆ A as follows:

– UB = Q(W (q, FA))/ ∼B ∪{uerr} is the set of equivalence classes of states in
W (q, FA) with respect to the indistinguishability relation of B, plus uerr;

– uI
B = [q]B ;

– ΣB is defined as usual. If 〈〈A〉〉ϕ is of the form 〈〈A〉〉�φ or 〈〈A〉〉φ U ψ, then we
also add the event ¬φ to ΣB ;

– tB(u, e) = u′ iff there are q1, q2 in the set of nodes of W (q, FA) such that
u = [q1]B and u′ = [q2]B , with q1 connected to q2 through an edge labelled
with FA(q1), and there is a joint action σ ∈ D(q1) with q1

σ−→ q2, σA = FA(q1)
and such that e = post(σ) � ΣB . If 〈〈A〉〉ϕ = �φ or 〈〈A〉〉ϕ = 〈〈A〉〉φ U ψ and
¬φ ∈ e, then u′ = uerr unless e = post(σ) � ΣB for an action σ leading to a
final state qf in W (q, FA). In the latter case the RM transitions to u′ = [qf ]
in the witness W (q, FA) (as φ needs to hold only strictly before ψ holds);

– For the definition of rB , there are three different cases:
1. rB(u, e) = 1 iff 〈〈A〉〉ϕ = 〈〈A〉〉©φ, u = [q], and e = post(FA(q)) � ΣB ,

or 〈〈A〉〉ϕ = 〈〈A〉〉φ U ψ and e = post(σ) � ΣB for an action σ leading to a
final state qf in W (q, FA).

2. rB(u, e) = −1 iff 〈〈A〉〉ϕ = 〈〈A〉〉�φ, u �= uerr and ¬φ ∈ e;
3. For all other (u, e), rB(u, e) = 0.

3.2 Correctness of the Approach

We now show that the RMs generated by our approach are “correct” decom-
positions in the sense of [12]. In [12] it is shown that the reward the individual
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RMs grant to the agents is always equal to the reward the coalition RM would
have granted them. Moreover, it is shown how the probabilities that each agent
achieves its subtask bound the probability that the whole coalition achieves the
team task. In this Subsection we replicate these results for our approach.

Let A be a coalition of agents, FA a strategy for the coalition and q the initial
state of the ECGS. We define the set of compatible event sequences ΞFA,s for
strategy FA and initial state q as the set of event sequences that is observed by
coalition A while following strategy FA, i.e. ΞFA,q := {ξ | ∃λ ∈ out(q, FA)∀j ∈
N∃σ ∈ D(λ[j]) : σA = FA(λ[j]) ∧ ξ[j] = post(σ) � ΣA}.

Theorem 1. Fix a strategy FA for the coalition of agents A = {i1, . . . , in}
and an initial state q. Let RA = 〈UA, uI

A, ΣA, tA, rA〉 be the coalition RM and
R⊗ = 〈U⊗, uI

⊗, Σ⊗, t⊗, r⊗〉 be the product RM Ri1 ⊗. . .⊗Rin . Given a compatible
event sequence ξ ∈ ΞFA,q, then for any step j ∈ |ξ| we have that rA(uj

A, ξ[j]) =
r⊗(g(uj), ξ[j]), where uj = (uj

i1
, . . . , uj

in
) is the j-th state reached by the product

RM following the event sequence ξ, and g((ui1 , . . . , uin)) :=
⋂

i∈A ui for any
(ui1 , . . . , uin) ∈ Ui1 × · · · × Uin , with Uij being the set of states of Rij .

Proof Sketch. The claim is proven by showing that g is a homomorphism, with
respect to the transition and reward functions, from the set of states of the
product RM (the parallelization of all the individual RMs) to that of the coalition
RM. This can be done via an induction on the length of the input sequence.

To conclude, we state a theorem relating the expected undiscounted future
rewards obtained by a coalition to the ones obtained by the agents in such
coalition. Consider a coalition A = {i1, . . . , in}, a witness W (q, FA) for some
state q of an ECGS and a strategy FA for some formula 〈〈A〉〉ϕ, a joint state s
of a MAE and an arbitrary joint policy π = (π1, . . . , πn) for the same MAE.
For the coalition RM RA built from W (q, FA), we denote by V π

A (s) the sum of
expected undiscounted future rewards produced by RA, given all agents follow
their policy as specified by π from the MGRM state s and the initial state
uI

A of RA. Analogously, for the individual RM Rij built from the same witness
W (q, FA), we denote by V π

ij
(s) the sum of expected undiscounted future rewards

produced by Rij under the same assumptions. Moreover, recall that if 〈〈A〉〉ϕ is
of the form 〈〈A〉〉©φ or 〈〈A〉〉φ U ψ, then any RM generated from a witness for a
strategy for the formula can give a reward of only 0 or 1. Similarly, any RM for
a formula of the form 〈〈A〉〉�φ can give a reward of only 0 or −1.

Theorem 2. If 〈〈A〉〉ϕ is of the form 〈〈A〉〉©φ or 〈〈A〉〉φ U ψ, then

max{0, V π
i1 (s) + . . . + V π

in (s) − (n − 1)} ≤ V π
A (s) ≤

min{V π
i1 (s), . . . , V π

in (s)}
If 〈〈A〉〉ϕ is of the form 〈〈A〉〉�φ, then

max{−V π
i1 (s), . . . ,−V π

in (s)} ≤ −V π
A (s) ≤

min{1,−V π
i1 (s) − . . . − V π

in (s)}.
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Proof Sketch. Observe that V π
A (s) and V π

ij
(s) are, respectively, the probabilities

that coalition A and agent ij complete, if 〈〈A〉〉ϕ is of the form 〈〈A〉〉©φ or
〈〈A〉〉φ U ψ, or fail, if 〈〈A〉〉ϕ is of the form 〈〈A〉〉�φ, their (sub)task. Since A
completes the task if and only if all its agents complete their task, and fails the
task if and only if some of its agents fail theirs, the claim follows by applying
the Fréchet inequalities for logical conjunctions and disjunctions.

Theorem 2 bounds the probability that a coalition completes or fails (depend-
ing on the formula) a task, assuming all agents follow the policy specified by π.
For formulas of the form 〈〈A〉〉©φ or 〈〈A〉〉φ U ψ, if all agents i ∈ A are able
to (eventually) complete their subtask, then coalition A is able to (eventually)
complete the team task: for all agents V π

ij
(s) = 1, then max{0, V π

i1
(s) + . . . +

V π
in

(s) − (n − 1)} = 1, and so V π
A (s) = 1. Similarly, for formulas of the form

〈〈A〉〉�φ, if agent ij violates φ, then the coalition will violate φ: −V π
ij

(s) = 1, then
max{−V π

i1
(s), . . . ,−V π

in
(s)} = 1, and so V π

A (s) = −1. When γ = 1, optimality
of individual policies implies optimality of the joint policy. Note this does not
imply the same holds when γ < 1, thus we leave this case to future research.

4 Evaluation

In this section we present an evaluation of the automatically synthesised reward
machines. Specifically, we show how strategies for team goals generated by the
model checker MCMAS [11] can be used to produce an RM for each agent in a
team of agents, and present results from the two benchmarks from [12], Cooper-
ativeButtons and 10-Agent Rendezvous3. The Rendezvous environment
is a 10× 10 gridworld in which the agents first have to rendezvous at a common
location, and then each agent has to reach its individual goal location.

We compare the performance of DQPRM when using our automatically syn-
thesised RMs and the RMs from [12] in both the CooperativeButtons and
Rendezvous environments. We used the same experimental setup as in [12] for
these two tasks. In both the CooperativeButtons and Rendezvous envi-
ronments, if an agent, during its individual training, observes an event that can
also be observed by another agent, it is provided with a signal that simulates
successful synchronisation with probability 0.3. This is needed to “simulate” the
behaviour of other agents during the individual training. For action selection,
agents use softmax exploration with a constant temperature of τ = 0.2. The
discount factor is γ = 0.9 and the learning rate α = 0.8. For both tasks each
experiment consists of 10 episodes: for CooperativeButtons each episode
consists of 250000 training steps, while for Rendezvous 150000 training steps.
For both tasks a test is run every 1000 training steps to evaluate the agents, with
every test running for at most 1000 steps (after which the test is ended and the
task is considered failed). Performance is measured as the number of steps nec-
essary to complete the task. For both plots, lines represent median performance,
whereas the shaded areas the 25th and 75th percentiles.

3 Code is available at github.com/giovannivarr/SynthesisingRMsMARL.

https://github.com/giovannivarr/SynthesisingRMsMARL
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The results are shown in Fig. 4. As can be seen, agents trained with our
automatically generated RMs converge faster than those trained with the hand-
crafted ones from [12]. We believe this might be due to the fact that in both
tasks the generated RMs have less states than the hand-crafted ones. Though
we do not have any formal results about this, we also think this is a side effect of
synthesising RMs against defining them by hand, as in the latter case one could
include information that might turn out to be superfluous to complete the final
task. It might also be the case that one does not include enough information,
hence obtaining an RM that is not informative enough to the agent to achieve
the task. Regardless, the experimental evaluation suggests that, at least for these
scenarios, automated synthesis generates RMs that successfully encode the task.

Fig. 4. CooperativeButtons and Rendezvous [12]. The x-axis shows the number of
elapsed training steps (in a logarithmic scale). The y-axis the number of steps required
for the learned policies to complete the task – note that the agents have a maximum
limit of 1000 steps to complete the task, after which the test is considered “failed”.

5 Related Works

There is a large literature on the problem of non-stationarity in MARL [7,8,14,
22]. Some approaches address the problem by training each agent individually.
For example, in IQL [16], each agent learns a policy by treating other agents
as part of the environment. Others, e.g., [6,21], adopt a hierarchical approach,
where a task is decomposed so that agents learn how to cooperate only at the
highest level of the hierarchy. This seems to be more efficient than learning
how to cooperate in the low-level environment. In a sense, we also employ a
hierarchical approach, but in our case there is no need for the agents to learn
how to cooperate at the high level because the policy learnt using their RM
ensures coordination.

An approach employing high-level planning for formally specified single-agent
RL tasks was proposed in [10]. First, low-level policies for a set of subtasks are
trained, and then high-level planning is used to identify the sequence of subtasks
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which maximizes the probability of achieving the task, as described by a formal
specification, given the current policies. Our work differs from [10] as we consider
a multi-agent setting and use a different specification language.

Reward machines were introduced in [18] as a way of improving the sample
efficiency of reinforcement learning by providing an RL agent with a high-level
abstract description of its task and environment. There have been several pro-
posals for the automated generation of RMs. For example, in [19,20] an RM is
learned by an agent through experience in the environment. Closer to our work is
[4], where an RM for a single agent is generated using LTL and other logics that
are equivalent to regular languages, and [9] where a single-agent RM is generated
from a sequential or a partial order plan. However, to the best of our knowledge,
our approach is the first to synthesise individual RMs in a multi-agent setting.

6 Conclusions and Future Work

We have given a procedure to synthesise team reward machines for a cooperative
MARL task from a given ATL specification. As in [12], the team RM is then
decomposed in individual RMs, one per agent in the team, that are used to train
such agents individually. We have provided theoretical bounds on the probability
of the team completing the task after its agents are trained individually, similarly
to what was done in [12]. Empirically, we have shown that the performance we
obtain by using our synthesised RMs is broadly similar to that obtained by using
hand-crafted ones from [12].

One direction for future work would be to investigate whether the use of
multiple or “partially-ordered” strategies improves performance in the multi-
agent setting. The RMs we construct are based on witnesses. Essentially, they
correspond to sequential plans, each of them representing a single strategy. How-
ever, in [9] it was shown that, for single-agent RL, using partial order plans to
construct RMs improves performance. In our approach, this would translate to
having a witness that, instead of representing a single strategy, shows all possible
strategies to achieve the task. In truth, this can already be done in the current
version of MCMAS. While this approach can be easily implemented in a single-
agent setting, it is not as trivial in a multi-agent one due to various reasons, e.g.,
it would require the agents to communicate to decide which plan to follow.

Another future direction would be to investigate non-cooperative RL scenar-
ios. In these cases, ATL could be easily employed to produce a strategy for the
coalition of agents we are interested in. MCMAS, the model checker we used
in this work, is able to generate witnesses for such settings. To the best of our
knowledge, this would also be a novelty in the reward machines literature, as
RMs have never been employed in a non-cooperative multi-agent setting.

Finally, one could consider to enrich the specification language to ATL∗. This
would enable even more flexible specification of tasks and generation of strategies
for several temporal formulas simultaneously.
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